cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122134 Expansion of Sum_{k>=0} x^(k^2+k)/((1-x)(1-x^2)...(1-x^(2k))).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 4, 6, 7, 10, 11, 16, 18, 24, 28, 36, 42, 54, 62, 78, 91, 112, 130, 159, 184, 222, 258, 308, 356, 424, 488, 576, 664, 778, 894, 1044, 1196, 1389, 1590, 1838, 2098, 2419, 2754, 3162, 3596, 4114, 4668, 5328, 6032, 6864, 7760, 8806, 9936, 11252
Offset: 0

Views

Author

Michael Somos, Aug 21 2006, Oct 10 2007

Keywords

Comments

Generating function arises naturally in Rodney Baxter's solution of the Hard Hexagon Model according to George Andrews.
In Watson 1937 page 275 he writes "Psi_0(q^{1/2},q) = prod_1^oo (1+q^{2n}) G(-q^2)" so this is the expansion in powers of q^2. - Michael Somos, Jun 29 2015
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Rogers-Ramanujan functions: G(q) (see A003114), H(q) (A003106).
From Gus Wiseman, Feb 26 2022: (Start)
Conjecture: Also the number of even-length integer partitions y of n such that y_i != y_{i+1} for all even i. For example, the a(2) = 1 through a(9) = 7 partitions are:
(11) (21) (22) (32) (33) (43) (44) (54)
(31) (41) (42) (52) (53) (63)
(51) (61) (62) (72)
(2211) (3211) (71) (81)
(3311) (3321)
(4211) (4311)
(5211)
This appears to be the even-length version of A122135.
The odd-length version is A351595.
For Wiseman's conjecture above and three other partition-theoretic interpretations of this sequence see Connor, Proposition 3. - Peter Bala, Jan 02 2025

Examples

			G.f. = 1 + x^2 + x^3 + 2*x^4 + 2*x^5 + 4*x^6 + 4*x^7 + 6*x^8 + 7*x^9 + ...
G.f. = q + q^81 + q^121 + 2*q^161 + 2*q^201 + 4*q^241 + 4*q^281 + ...
		

References

  • G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1999; Exercise 6(c), p. 591.
  • G. E. Andrews, q-series, CBMS Regional Conference Series in Mathematics, 66, Amer. Math. Soc. 1986, see p. 8, Eq. (1.6). MR0858826 (88b:11063)

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^(k^2 + k) / QPochhammer[ x, x, 2 k], {k, 0, (Sqrt[ 4 n + 1] - 1) / 2}], {x, 0, n}]]; (* Michael Somos, Jun 29 2015 *)
    a[ n_] := SeriesCoefficient [ 1 / (QPochhammer[ x^4, -x^5] QPochhammer[ -x, -x^5] QPochhammer[ x, x^2]), {x, 0, n}]; (* Michael Somos, Jun 29 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^2, -x^5] QPochhammer[ -x^3, -x^5] QPochhammer[ -x^5] / EllipticTheta[ 4, 0, x^2], {x, 0, n}]; (* Michael Somos, Jun 29 2015 *)
    nmax = 50; CoefficientList[Series[Product[1/((1 - x^(20*k+2))*(1 - x^(20*k+3))*(1 - x^(20*k+4))*(1 - x^(20*k+5))*(1 - x^(20*k+6))*(1 - x^(20*k+7))*(1 - x^(20*k+13))*(1 - x^(20*k+14))*(1 - x^(20*k+15))*(1 - x^(20*k+16))*(1 - x^(20*k+17)) *(1 - x^(20*k+18))), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 12 2016 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint(4*n + 1) - 1)\2, x^(k^2 + k) / prod(i=1, 2*k, 1 - x^i, 1 + x * O(x^(n -k^2-k)))), n))};

Formula

Euler transform of period 20 sequence [ 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, ...].
Expansion of f(x^4, x^6) / f(-x^2, -x^3) in powers of x where f(, ) is the Ramanujan general theta function. - Michael Somos, Jun 29 2015
Expansion of f(-x^2, x^3) / phi(-x^2) in powers of x where phi() is a Ramanujan theta function. - Michael Somos, Jun 29 2015
Expansion of G(-x) / chi(-x) in powers of x where chi() is a Ramanujan theta function and G() is a Rogers-Ramanujan function. - Michael Somos, Jun 29 2015
G.f.: Sum_{k>=0} x^(k^2 + k) / ((1 - x) * (1 - x^2) * ... * (1 - x^(2*k))).
Expansion of f(-x, -x^9) * f(-x^8, -x^12) / ( f(-x) * f(-x^20) ) in powers of x where f(, ) is the Ramanujan general theta function.
a(n) = number of partitions of n into parts that are each either == 2, 3, ..., 7 (mod 20) or == 13, 14, ..., 18 (mod 20). - Michael Somos, Jun 29 2015 [corrected by Vaclav Kotesovec, Nov 12 2016]
a(n) ~ (3 - sqrt(5))^(1/4) * exp(Pi*sqrt(2*n/5)) / (4*sqrt(5)*n^(3/4)). - Vaclav Kotesovec, Nov 12 2016