cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A122137 Indices n such that A122136[n] = 1, or A024450[n] divides A002110[n].

Original entry on oeis.org

30, 123, 195, 214, 248, 300, 304, 335, 343, 350, 364, 367, 414, 443, 543, 570, 579, 584, 590, 612, 671, 691, 706, 707, 734, 780, 791, 799, 806, 810, 827, 836, 852, 880, 938, 960, 976, 1015, 1055, 1147, 1168, 1190, 1195, 1199, 1200, 1210, 1230, 1231, 1250
Offset: 1

Views

Author

Alexander Adamchuk, Aug 21 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Do[f=Numerator[Sum[Prime[k]^2,{k,1,n}]/Product[Prime[k],{k,1,n}]];If[f==1,Print[n]],{n,1,10000}]

Formula

A122136[ a(n) ] = 1.

A122138 Indices k such that A122136(k) is a prime.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 11, 12, 14, 15, 18, 20, 22, 23, 26, 27, 32, 36, 38, 39, 40, 44, 47, 48, 50, 51, 52, 54, 55, 56, 58, 59, 60, 64, 66, 68, 71, 72, 74, 76, 78, 80, 83, 84, 86, 88, 89, 90, 92, 94, 95, 96, 98, 100, 102, 103, 107, 108, 110, 112, 114, 116, 118, 120, 122, 126
Offset: 1

Views

Author

Alexander Adamchuk, Aug 21 2006

Keywords

Comments

The corresponding primes are listed in A122139.

Crossrefs

Programs

  • Mathematica
    Select[Range[200],PrimeQ[Numerator[Sum[Prime[k]^2,{k,1,#1}]/Product[Prime[k],{k,1,#1}]]]&]

A122139 Primes from A122136 corresponding to the indices A122138.

Original entry on oeis.org

2, 13, 19, 29, 29, 79, 47, 73, 163, 359, 5233, 20477, 811, 13859, 2203, 75997, 3331, 4457, 239087, 58061, 159097, 116041, 7487, 17929, 4547, 152657, 408787, 58313, 5563, 4783, 226199, 13729, 676763, 204641, 119293, 283979, 2210983, 7121, 433
Offset: 1

Views

Author

Alexander Adamchuk, Aug 21 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Table[Numerator[Sum[Prime[k]^2,{k,1,n}]/Product[Prime[k],{k,1,n}]],{n,1,200}],PrimeQ[ #1]&]

Formula

a(n) = A122136(A122138(n)).
Showing 1-3 of 3 results.