cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A122136 Numerator of Sum[ Prime[k]^2, {k,1,n}] / Product[ Prime[k], {k,1,n}] = Numerator[ A024450[n] / A002110[n] ].

Original entry on oeis.org

2, 13, 19, 29, 104, 29, 111, 79, 778, 47, 73, 163, 1068, 359, 5233, 885, 142, 20477, 219, 811, 2524, 13859, 2203, 56387, 10966, 75997, 3331, 6537, 54968, 1, 23139, 4457, 87382, 681, 15449, 239087, 108, 58061, 159097, 116041, 1882, 995, 74901, 7487
Offset: 1

Views

Author

Alexander Adamchuk, Aug 21 2006

Keywords

Comments

a(n) = 1 for n = {30,123,195,214,248,300,304,335,343,350,364,367,414,443,543,570,579,584,590,612,671,691,...} = A122137. a(n) is prime for n = {1,2,3,4,6,8,10,11,12,14,15,18,20,22,23,26,27,32,36,...} = A122138. Prime a(n) are listed in A122139 = {2,13,19,29,29,79,47,73,163,359,5233,20477,811,13859,2203,75997,3331,...}.

Crossrefs

Programs

  • Mathematica
    Table[Numerator[Sum[Prime[k]^2,{k,1,n}]/Product[Prime[k],{k,1,n}]],{n,1,100}]

Formula

a(n) = Numerator[ Sum[ Prime[k]^2, {k,1,n}] / Product[ Prime[k], {k,1,n}] ].

A122138 Indices k such that A122136(k) is a prime.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 11, 12, 14, 15, 18, 20, 22, 23, 26, 27, 32, 36, 38, 39, 40, 44, 47, 48, 50, 51, 52, 54, 55, 56, 58, 59, 60, 64, 66, 68, 71, 72, 74, 76, 78, 80, 83, 84, 86, 88, 89, 90, 92, 94, 95, 96, 98, 100, 102, 103, 107, 108, 110, 112, 114, 116, 118, 120, 122, 126
Offset: 1

Views

Author

Alexander Adamchuk, Aug 21 2006

Keywords

Comments

The corresponding primes are listed in A122139.

Crossrefs

Programs

  • Mathematica
    Select[Range[200],PrimeQ[Numerator[Sum[Prime[k]^2,{k,1,#1}]/Product[Prime[k],{k,1,#1}]]]&]

A264897 Integers n such that A002110(n) is divisible by A098999(n).

Original entry on oeis.org

138, 163, 873, 1054, 1079, 1604, 1825, 1990, 2079, 2493, 2509, 2810, 2950, 3494, 3800, 3910, 4300, 4462, 4470, 4564, 4593, 4957, 5140, 5450, 5558, 5572, 5581, 5834, 6391, 6792, 6969, 7444, 7892, 8321, 8530, 8581, 9254, 9299, 9522, 9832, 9847, 10082, 10850
Offset: 1

Views

Author

Altug Alkan, Nov 27 2015

Keywords

Comments

A002110(138) has 327 digits.
What is the minimum value of a(n) - a(n-1)?

Crossrefs

Programs

  • Mathematica
    Select[Range@ 10000, Divisible[Product[Prime@ k, {k, #}], Sum[Prime[k]^3, {k, #}]] &] (* Michael De Vlieger, Nov 28 2015 *)
  • PARI
    for(n=1, 11000, if(prod(k=1, n, prime(k)) % sum(k=1, n, prime(k)^3) == 0, print1(n, ", ")))
Showing 1-3 of 3 results.