A122167 Expansion of x*(-1+5*x-6*x^2+x^3) / ( (2*x-1)*(x^3-3*x^2+1) ).
1, -3, 3, -11, 10, -40, 33, -146, 107, -535, 339, -1968, 1040, -7267, 3040, -26937, 8195, -100235, 18754, -374436, 25425, -1404206, -73577, -5286619, -913677, -19980584, -5843020, -75805291, -31102908, -288681717, -151721161, -1103377699, -703352678, -4232153760, -3154163983
Offset: 1
Links
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
- Index entries for linear recurrences with constant coefficients, signature (2,3,-7,2).
Programs
-
Mathematica
Rest[CoefficientList[Series[x (-1+5x-6x^2+x^3)/((2x-1)(x^3-3x^2+1)),{x,0,40}],x]] (* or *) LinearRecurrence[{2,3,-7,2},{1,-3,3,-11},40] (* Harvey P. Dale, Apr 28 2015 *)
-
PARI
Vec(x*(-1+5*x-6*x^2+x^3)/((2*x-1)*(x^3-3*x^2+1))+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012