A122178 Triangle, read by rows, where T(n,k) = C( n*(n+1)/2 + n-k - 1, n-k), for n>=k>=0.
1, 1, 1, 6, 3, 1, 56, 21, 6, 1, 715, 220, 55, 10, 1, 11628, 3060, 680, 120, 15, 1, 230230, 53130, 10626, 1771, 231, 21, 1, 5379616, 1107568, 201376, 31465, 4060, 406, 28, 1, 145008513, 26978328, 4496388, 658008, 82251, 8436, 666, 36, 1, 4431613550
Offset: 0
Examples
Triangle begins: 1; 1, 1; 6, 3, 1; 56, 21, 6, 1; 715, 220, 55, 10, 1; 11628, 3060, 680, 120, 15, 1; 230230, 53130, 10626, 1771, 231, 21, 1; 5379616, 1107568, 201376, 31465, 4060, 406, 28, 1; 145008513, 26978328, 4496388, 658008, 82251, 8436, 666, 36, 1; ...
Crossrefs
Programs
-
PARI
T(n,k)=binomial(n*(n+1)/2+n-k-1,n-k)
Formula
Remarkably, row n of the matrix inverse (A121438) equals row n of A121412^(-n*(n+1)/2). Further, the following matrix products of triangles of binomial coefficients are equal: A121412 = A121334*A122178^-1 = A121335*A121334^-1 = A121336*A121335^-1, where row n of H=A121412 equals row (n-1) of H^(n+1) with an appended '1'.
Comments