cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122214 Numerators in infinite products for Pi/2, e and e^gamma (reduced).

Original entry on oeis.org

1, 2, 4, 32, 4096, 67108864, 4503599627370496, 2535301200456458802993406410752, 4084620902943761579745625423246687265522976897405582347410338578593480704
Offset: 1

Views

Author

Jonathan Sondow, Aug 26 2006

Keywords

Examples

			Pi/2 = (2/1)^(1/2) * (4/3)^(1/4) * (32/27)^(1/8) * (4096/3645)^(1/16) * ...,
e = (2/1)^(1/1) * (4/3)^(1/2) * (32/27)^(1/3) * (4096/3645)^(1/4) * ... and
e^gamma = (2/1)^(1/2) * (4/3)^(1/3) * (32/27)^(1/4) * (4096/3645)^(1/5) * ....
		

Crossrefs

Cf. A092798. Denominators are A122215. Unreduced numerators are A122216.

Programs

  • Mathematica
    Table[Exp[-2*Integrate[x^(2n-1)/Log[1-x^2],{x,0,1}]],{n,2,8}]
    Numerator@Exp@Join[{0},Integrate[(1-Exp[-(#*x)^-1])^#,{x,0,Infinity}]&/@Range[2,10]] (* Federico Provvedi, Jun 29 2023 *)
  • PARI
    {a(n) = numerator(prod(k=1, n, k^((-1)^k*binomial(n-1,k-1))))} \\ Seiichi Manyama, Mar 10 2019

Formula

a(n) = numerator(Product_{k=1..n} k^((-1)^k*binomial(n-1,k-1))).
For n >= 2, a(n) = numerator(exp(-2*Integral_{x=0..1} x^(2*n-1)/log(1-x^2) dx)) (see Mathematica code below). - John M. Campbell, Jul 18 2011
For n >= 2, a(n) = numerator(exp((1/n)*Integral_{x=0..oo} (1-exp(-1/x))^n dx)). - Federico Provvedi, Jun 29 2023