cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122215 Denominators in infinite products for Pi/2, e and e^gamma (reduced).

Original entry on oeis.org

1, 1, 3, 27, 3645, 61509375, 4204742431640625, 2396825584582984447479248046875, 3896237517467890187050354408614984136338676989907980896532535552978515625
Offset: 1

Views

Author

Jonathan Sondow, Aug 26 2006

Keywords

Examples

			Pi/2 = (2/1)^(1/2) * (4/3)^(1/4) * (32/27)^(1/8) * (4096/3645)^(1/16) * ...,
e = (2/1)^(1/1) * (4/3)^(1/2) * (32/27)^(1/3) * (4096/3645)^(1/4) * ... and
e^gamma = (2/1)^(1/2) * (4/3)^(1/3) * (32/27)^(1/4) * (4096/3645)^(1/5) *
...
		

Crossrefs

Cf. A092799. Numerators are A122214. Unreduced denominators are A122217.

Programs

  • Mathematica
    Table[Exp[-2*Integrate[x^(2n-1)/Log[1-x^2],{x,0,1}]],{n,2,8}]
    Denominator@Table[Product[k^((-1)^k Binomial[n-1, k-1]), {k, 1, n}], {n, 1, 10}] (* Vladimir Reshetnikov, May 29 2016 *)
  • PARI
    {a(n) = denominator(prod(k=1, n, k^((-1)^k*binomial(n-1,k-1))))} \\ Seiichi Manyama, Mar 10 2019

Formula

a(n) = denominator(Product_{k=1..n} k^((-1)^k*binomial(n-1,k-1))).
For n>=2, a(n) = denominator(exp(-2 * Integral_{x=0..1} x^(2*n-1)/log(1-x^2) dx)) (see Mathematica code below). - John M. Campbell, Jul 18 2011
For n>=2, a(n) = denominator(exp((1/n)*Integral_{x=0..oo} (1-exp(-1/x))^n dx)). - Federico Provvedi, Jun 29 2023