A122217 Denominators in infinite products for Pi/2, e and e^gamma (unreduced).
1, 1, 3, 27, 3645, 184528125, 3065257232666015625, 25071642180724968784488737583160400390625, 802200753381108669054307548505058630413812174354826201039259103708900511264801025390625
Offset: 0
Examples
Pi/2 = (2/1)^(1/2) * (4/3)^(1/4) * (32/27)^(1/8) * (4096/3645)^(1/16) * ..., e = (2/1)^(1/1) * (4/3)^(1/2) * (32/27)^(1/3) * (4096/3645)^(1/4) * ... and e^gamma = (2/1)^(1/2) * (4/3)^(1/3) * (32/27)^(1/4) * (4096/3645)^(1/5) * ...
Links
- Mohammad K. Azarian, Euler's Number Via Difference Equations, International Journal of Contemporary Mathematical Sciences, Vol. 7, 2012, No. 22, pp. 1095 - 1102.
- J. Baez, This Week's Finds in Mathematical Physics
- J. Guillera and J. Sondow, Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent, Ramanujan J. 16 (2008) 247-270; arXiv:math/0506319 [math.NT], 2005-2006.
- J. Sondow, A faster product for Pi and a new integral for ln(Pi/2), arXiv:math/0401406 [math.NT], 2004.
- J. Sondow, A faster product for Pi and a new integral for ln(Pi/2), Amer. Math. Monthly 112 (2005), 729-734 and 113 (2006), 670.
Programs
-
Mathematica
Table[Product[(2k-1)^Binomial[n,2k-2], {k,1+Floor[n/2]}], {n,0,8}] (* T. D. Noe, Nov 16 2006 *)
Formula
a(n) = Product_{k=1..floor(n/2)+1} (2k-1)^binomial(n,2k-2).
Extensions
Corrected by T. D. Noe, Nov 16 2006