cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A001113 Decimal expansion of e.

Original entry on oeis.org

2, 7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, 9, 0, 4, 5, 2, 3, 5, 3, 6, 0, 2, 8, 7, 4, 7, 1, 3, 5, 2, 6, 6, 2, 4, 9, 7, 7, 5, 7, 2, 4, 7, 0, 9, 3, 6, 9, 9, 9, 5, 9, 5, 7, 4, 9, 6, 6, 9, 6, 7, 6, 2, 7, 7, 2, 4, 0, 7, 6, 6, 3, 0, 3, 5, 3, 5, 4, 7, 5, 9, 4, 5, 7, 1, 3, 8, 2, 1, 7, 8, 5, 2, 5, 1, 6, 6, 4, 2, 7, 4, 2, 7, 4, 6
Offset: 1

Views

Author

Keywords

Comments

e is sometimes called Euler's number or Napier's constant.
Also, decimal expansion of sinh(1)+cosh(1). - Mohammad K. Azarian, Aug 15 2006
If m and n are any integers with n > 1, then |e - m/n| > 1/(S(n)+1)!, where S(n) = A002034(n) is the smallest number such that n divides S(n)!. - Jonathan Sondow, Sep 04 2006
Limit_{n->infinity} A000166(n)*e - A000142(n) = 0. - Seiichi Kirikami, Oct 12 2011
Euler's constant (also known as Euler-Mascheroni constant) is gamma = 0.57721... and Euler's number is e = 2.71828... . - Mohammad K. Azarian, Dec 29 2011
One of the many continued fraction expressions for e is 2+2/(2+3/(3+4/(4+5/(5+6/(6+ ... from Ramanujan (1887-1920). - Robert G. Wilson v, Jul 16 2012
e maximizes the value of x^(c/x) for any real positive constant c, and minimizes for it for a negative constant, on the range x > 0. This explains why elements of A000792 are composed primarily of factors of 3, and where needed, some factors of 2. These are the two primes closest to e. - Richard R. Forberg, Oct 19 2014
There are two real solutions x to c^x = x^c when c, x > 0 and c != e, one of which is x = c, and only one real solution when c = e, where the solution is x = e. - Richard R. Forberg, Oct 22 2014
This is the expected value of the number of real numbers that are independently and uniformly chosen at random from the interval (0, 1) until their sum exceeds 1 (Bush, 1961). - Amiram Eldar, Jul 21 2020

Examples

			2.71828182845904523536028747135266249775724709369995957496696762772407663...
		

References

  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 400.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 24, 250-256.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.3.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.4 Irrational Numbers, p. 85.
  • E. Maor, e: The Story of a Number, Princeton Univ. Press, 1994.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 52.
  • G. W. Reitwiesner, An ENIAC determination of pi and e to more than 2000 decimal places. Math. Tables and Other Aids to Computation 4, (1950). 11-15.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapters 1 and 2, equations 1:7:4, 2:5:4 at pages 13, 20.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 46.

Crossrefs

Cf. A002034, A003417 (continued fraction), A073229, A122214, A122215, A122216, A122217, A122416, A122417.
Expansion of e in base b: A004593 (b=2), A004594 (b=3), A004595 (b=4), A004596 (b=5), A004597 (b=6), A004598 (b=7), A004599 (b=8), A004600 (b=9), this sequence (b=10), A170873 (b=16). - Jason Kimberley, Dec 05 2012
Powers e^k: A092578 (k = -7), A092577 (k = -6), A092560 (k = -5), A092553 - A092555 (k = -2 to -4), A068985 (k = -1), A072334 (k = 2), A091933 (k = 3), A092426 (k = 4), A092511 - A092513 (k = 5 to 7).

Programs

  • Haskell
    -- See Niemeijer link.
    a001113 n = a001113_list !! (n-1)
    a001113_list = eStream (1, 0, 1)
       [(n, a * d, d) | (n, d, a) <- map (\k -> (1, k, 1)) [1..]] where
       eStream z xs'@(x:xs)
         | lb /= approx z 2 = eStream (mult z x) xs
         | otherwise = lb : eStream (mult (10, -10 * lb, 1) z) xs'
         where lb = approx z 1
               approx (a, b, c) n = div (a * n + b) c
               mult (a, b, c) (d, e, f) = (a * d, a * e + b * f, c * f)
    -- Reinhard Zumkeller, Jun 12 2013
  • Maple
    Digits := 200: it := evalf((exp(1))/10, 200): for i from 1 to 200 do printf(`%d,`,floor(10*it)): it := 10*it-floor(10*it): od: # James Sellers, Feb 13 2001
  • Mathematica
    RealDigits[E, 10, 120][[1]] (* Harvey P. Dale, Nov 14 2011 *)

Formula

e = Sum_{k >= 0} 1/k! = lim_{x -> 0} (1+x)^(1/x).
e is the unique positive root of the equation Integral_{u = 1..x} du/u = 1.
exp(1) = ((16/31)*(1 + Sum_{n>=1} ((1/2)^n*((1/2)*n^3 + (1/2)*n + 1)/n!)))^2. Robert Israel confirmed that the above formula is correct, saying: "In fact, Sum_{n=0..oo} n^j*t^n/n! = P_j(t)*exp(t) where P_0(t) = 1 and for j >= 1, P_j(t) = t (P_(j-1)'(t) + P_(j-1)(t)). Your sum is 1/2*P_3(1/2) + 1/2*P_1(1/2) + P_0(1/2)." - Alexander R. Povolotsky, Jan 04 2009
exp(1) = (1 + Sum_{n>=1} ((1+n+n^3)/n!))/7. - Alexander R. Povolotsky, Sep 14 2011
e = 1 + (2 + (3 + (4 + ...)/4)/3)/2 = 2 + (1 + (1 + (1 + ...)/4)/3)/2. - Rok Cestnik, Jan 19 2017
From Peter Bala, Nov 13 2019: (Start)
The series representation e = Sum_{k >= 0} 1/k! is the case n = 0 of the more general result e = n!*Sum_{k >= 0} 1/(k!*R(n,k)*R(n,k+1)), n = 0,2,3,4,..., where R(n,x) is the n-th row polynomial of A269953.
e = 2 + Sum_{n >= 0} (-1)^n*(n+2)!/(d(n+2)*d(n+3)), where d(n) = A000166(n).
e = Sum_{n >= 0} (x^2 + (n+2)*x + n)/(n!(n + x)*(n + 1 + x)), provided x is not zero or a negative integer. (End)
Equals lim_{n -> oo} (2*3*5*...*prime(n))^(1/prime(n)). - Peter Luschny, May 21 2020
e = 3 - Sum_{n >= 0} 1/((n+1)^2*(n+2)^2*n!). - Peter Bala, Jan 13 2022
e = lim_{n->oo} prime(n)*(1 - 1/n)^prime(n). - Thomas Ordowski, Jan 31 2023
e = 1+(1/1)*(1+(1/2)*(1+(1/3)*(1+(1/4)*(1+(1/5)*(1+(1/6)*(...)))))), equivalent to the first formula. - David Ulgenes, Dec 01 2023
From Michal Paulovic, Dec 12 2023: (Start)
Equals lim_{n->oo} (1 + 1/n)^n.
Equals x^(x^(x^...)) (infinite power tower) where x = e^(1/e) = A073229. (End)
Equals Product_{k>=1} (1 + 1/k) * (1 - 1/(k + 1)^2)^k. - Antonio Graciá Llorente, May 14 2024
Equals lim_{n->oo} Product_{k=1..n} (n^2 + k)/(n^2 - k) (see Finch). - Stefano Spezia, Oct 19 2024
e ~ (1 + 9^((-4)^(7*6)))^(3^(2^85)), correct to more than 18*10^24 digits (Richard Sabey, 2004); see Haran and Grime link. - Paolo Xausa, Dec 21 2024.

A122215 Denominators in infinite products for Pi/2, e and e^gamma (reduced).

Original entry on oeis.org

1, 1, 3, 27, 3645, 61509375, 4204742431640625, 2396825584582984447479248046875, 3896237517467890187050354408614984136338676989907980896532535552978515625
Offset: 1

Views

Author

Jonathan Sondow, Aug 26 2006

Keywords

Examples

			Pi/2 = (2/1)^(1/2) * (4/3)^(1/4) * (32/27)^(1/8) * (4096/3645)^(1/16) * ...,
e = (2/1)^(1/1) * (4/3)^(1/2) * (32/27)^(1/3) * (4096/3645)^(1/4) * ... and
e^gamma = (2/1)^(1/2) * (4/3)^(1/3) * (32/27)^(1/4) * (4096/3645)^(1/5) *
...
		

Crossrefs

Cf. A092799. Numerators are A122214. Unreduced denominators are A122217.

Programs

  • Mathematica
    Table[Exp[-2*Integrate[x^(2n-1)/Log[1-x^2],{x,0,1}]],{n,2,8}]
    Denominator@Table[Product[k^((-1)^k Binomial[n-1, k-1]), {k, 1, n}], {n, 1, 10}] (* Vladimir Reshetnikov, May 29 2016 *)
  • PARI
    {a(n) = denominator(prod(k=1, n, k^((-1)^k*binomial(n-1,k-1))))} \\ Seiichi Manyama, Mar 10 2019

Formula

a(n) = denominator(Product_{k=1..n} k^((-1)^k*binomial(n-1,k-1))).
For n>=2, a(n) = denominator(exp(-2 * Integral_{x=0..1} x^(2*n-1)/log(1-x^2) dx)) (see Mathematica code below). - John M. Campbell, Jul 18 2011
For n>=2, a(n) = denominator(exp((1/n)*Integral_{x=0..oo} (1-exp(-1/x))^n dx)). - Federico Provvedi, Jun 29 2023

A122216 Numerators in infinite products for Pi/2, e and e^gamma (unreduced).

Original entry on oeis.org

1, 2, 4, 32, 4096, 201326592, 3283124128353091584, 26520146032764463901929624736590416838656, 840987221884558487834659180201583257033385988411167452990072842049923846092011283152896
Offset: 0

Views

Author

Jonathan Sondow, Aug 26 2006

Keywords

Examples

			Pi/2 = (2/1)^(1/2) * (4/3)^(1/4) * (32/27)^(1/8) * (4096/3645)^(1/16) * ...,
e = (2/1)^(1/1) * (4/3)^(1/2) * (32/27)^(1/3) * (4096/3645)^(1/4) * ... and
e^gamma = (2/1)^(1/2) * (4/3)^(1/3) * (32/27)^(1/4) * (4096/3645)^(1/5) * ....
		

Crossrefs

Cf. A092798. Denominators are A122217. Reduced numerators are A122214.

Programs

  • Mathematica
    a[n_] := Product[(2k)^Binomial[n, 2k-1], {k, 1, n/2 // Ceiling}];
    Table[a[n], {n, 0, 8}] (* Jean-François Alcover, Nov 18 2018 *)

Formula

a(n) = Product_{k=1..ceiling(n/2)} (2k)^binomial(n,2k-1).

Extensions

Offset and truncated term 840987221884... corrected by Jean-François Alcover, Nov 18 2018

A092798 Numerator of partial products in an approximation of Pi/2.

Original entry on oeis.org

2, 16, 8192, 274877906944, 5070602400912917605986812821504, 115792089237316195423570985008687907853269984665640564039457584007913129639936
Offset: 1

Views

Author

Ralf Stephan, Mar 05 2004

Keywords

Examples

			The first approximations are 2^(1/2), (16/3)^(1/4), (8192/243)^(1/8), (274877906944/215233605)^(1/16).
		

Crossrefs

Denominators are in A092799.

Programs

  • PARI
    for(m=1, 7, p=1; for(n=1, m, p=p*p*(prod(k=1, ceil(n/2), (2*k)^binomial(n, 2*k-1))/(prod(k=1, floor(n/2)+1, (2*k-1)^binomial(n, 2*k-2))))); print1(numerator(p), ", "))

Formula

a(n) = Product_{k=1..n+1} A122214(k)^2^(n-k+1). - Jonathan Sondow, Sep 13 2006
a(n) = Numerator(Product_{k=1..n+1} (A122216(k)/A122217(k))^2^(n-k+1)). - Jonathan Sondow, Sep 13 2006

A092799 Denominator of partial products in an approximation to Pi/2.

Original entry on oeis.org

1, 3, 243, 215233605, 2849452841966467687734375, 34139907905802495953388390516678108673704867996275424957275390625
Offset: 1

Views

Author

Ralf Stephan, Mar 05 2004

Keywords

Examples

			The first approximations are 2^(1/2), (16/3)^(1/4), (8192/243)^(1/8), (274877906944/215233605)^(1/16).
		

Crossrefs

Numerators are in A092798.

Programs

  • PARI
    for(m=1, 7, p=1; for(n=1, m, p=p*p*(prod(k=1, ceil(n/2), (2*k)^binomial(n, 2*k-1))/(prod(k=1, floor(n/2)+1, (2*k-1)^binomial(n, 2*k-2))))); print1(denominator(p), ", "))

Formula

a(n) = Product_{k=1..n+1} A122215(k)^2^(n-k+1). - Jonathan Sondow, Sep 13 2006
a(n) = Denominator(Product_{k=1..n+1} (A122216(k)/A122217(k))^2^(n-k+1)). - Jonathan Sondow, Sep 13 2006

A193548 Decimal expansion of exp(Pi^2/12).

Original entry on oeis.org

2, 2, 7, 6, 1, 0, 8, 1, 5, 1, 6, 2, 5, 7, 3, 4, 0, 9, 4, 7, 9, 1, 0, 6, 1, 4, 1, 2, 0, 3, 1, 4, 9, 7, 4, 4, 6, 6, 9, 7, 9, 7, 4, 2, 6, 0, 3, 0, 0, 2, 3, 7, 7, 5, 6, 1, 5, 5, 1, 6, 1, 7, 0, 9, 8, 2, 7, 5, 0, 6, 3, 7, 2, 8, 6, 3, 0, 1, 4, 3, 1, 8, 6, 6, 8, 4, 6, 5, 7
Offset: 1

Views

Author

John M. Campbell, Jul 30 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Product[Product[k^((1/(n+1))*(-1)^(k)*Binomial[n,k-1]*HarmonicNumber[n]),{k,1,n+1}],{n,1,Infinity}]
    RealDigits[E^(Pi^2/12), 10, 100]
  • PARI
    exp(Pi^2/12) \\ Charles R Greathouse IV, Jul 30 2011

Formula

exp(Pi^2/12) = Product_{n>=1} Product_{k=1..n+1} k^(1/(n+1)) * H(n) * (-1)^k * binomial(n, k-1) where H(n) is the n-th harmonic number.
exp(Pi^2/12) = lim_{n -> infinity} Product_{k=1..n} (1 + k/n)^(1/k). - Peter Bala, Feb 14 2015
Showing 1-6 of 6 results.