cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A122215 Denominators in infinite products for Pi/2, e and e^gamma (reduced).

Original entry on oeis.org

1, 1, 3, 27, 3645, 61509375, 4204742431640625, 2396825584582984447479248046875, 3896237517467890187050354408614984136338676989907980896532535552978515625
Offset: 1

Views

Author

Jonathan Sondow, Aug 26 2006

Keywords

Examples

			Pi/2 = (2/1)^(1/2) * (4/3)^(1/4) * (32/27)^(1/8) * (4096/3645)^(1/16) * ...,
e = (2/1)^(1/1) * (4/3)^(1/2) * (32/27)^(1/3) * (4096/3645)^(1/4) * ... and
e^gamma = (2/1)^(1/2) * (4/3)^(1/3) * (32/27)^(1/4) * (4096/3645)^(1/5) *
...
		

Crossrefs

Cf. A092799. Numerators are A122214. Unreduced denominators are A122217.

Programs

  • Mathematica
    Table[Exp[-2*Integrate[x^(2n-1)/Log[1-x^2],{x,0,1}]],{n,2,8}]
    Denominator@Table[Product[k^((-1)^k Binomial[n-1, k-1]), {k, 1, n}], {n, 1, 10}] (* Vladimir Reshetnikov, May 29 2016 *)
  • PARI
    {a(n) = denominator(prod(k=1, n, k^((-1)^k*binomial(n-1,k-1))))} \\ Seiichi Manyama, Mar 10 2019

Formula

a(n) = denominator(Product_{k=1..n} k^((-1)^k*binomial(n-1,k-1))).
For n>=2, a(n) = denominator(exp(-2 * Integral_{x=0..1} x^(2*n-1)/log(1-x^2) dx)) (see Mathematica code below). - John M. Campbell, Jul 18 2011
For n>=2, a(n) = denominator(exp((1/n)*Integral_{x=0..oo} (1-exp(-1/x))^n dx)). - Federico Provvedi, Jun 29 2023

A122217 Denominators in infinite products for Pi/2, e and e^gamma (unreduced).

Original entry on oeis.org

1, 1, 3, 27, 3645, 184528125, 3065257232666015625, 25071642180724968784488737583160400390625, 802200753381108669054307548505058630413812174354826201039259103708900511264801025390625
Offset: 0

Views

Author

Jonathan Sondow, Aug 26 2006

Keywords

Examples

			Pi/2 = (2/1)^(1/2) * (4/3)^(1/4) * (32/27)^(1/8) *
(4096/3645)^(1/16) * ...,
e = (2/1)^(1/1) * (4/3)^(1/2) * (32/27)^(1/3) * (4096/3645)^(1/4) * ... and
e^gamma = (2/1)^(1/2) * (4/3)^(1/3) * (32/27)^(1/4) * (4096/3645)^(1/5) *
...
		

Crossrefs

Cf. A092799. Numerators are A122216. Reduced denominators are A122215.

Programs

  • Mathematica
    Table[Product[(2k-1)^Binomial[n,2k-2], {k,1+Floor[n/2]}], {n,0,8}] (* T. D. Noe, Nov 16 2006 *)

Formula

a(n) = Product_{k=1..floor(n/2)+1} (2k-1)^binomial(n,2k-2).

Extensions

Corrected by T. D. Noe, Nov 16 2006

A092798 Numerator of partial products in an approximation of Pi/2.

Original entry on oeis.org

2, 16, 8192, 274877906944, 5070602400912917605986812821504, 115792089237316195423570985008687907853269984665640564039457584007913129639936
Offset: 1

Views

Author

Ralf Stephan, Mar 05 2004

Keywords

Examples

			The first approximations are 2^(1/2), (16/3)^(1/4), (8192/243)^(1/8), (274877906944/215233605)^(1/16).
		

Crossrefs

Denominators are in A092799.

Programs

  • PARI
    for(m=1, 7, p=1; for(n=1, m, p=p*p*(prod(k=1, ceil(n/2), (2*k)^binomial(n, 2*k-1))/(prod(k=1, floor(n/2)+1, (2*k-1)^binomial(n, 2*k-2))))); print1(numerator(p), ", "))

Formula

a(n) = Product_{k=1..n+1} A122214(k)^2^(n-k+1). - Jonathan Sondow, Sep 13 2006
a(n) = Numerator(Product_{k=1..n+1} (A122216(k)/A122217(k))^2^(n-k+1)). - Jonathan Sondow, Sep 13 2006
Showing 1-3 of 3 results.