Original entry on oeis.org
110100, 11110000, 1111000100, 111110000100, 11110011000100, 1111110000010100, 111100100111100000, 11110001011100100100, 1111111000101100000100, 111100101001101001110000
Offset: 1
A080070
Decimal encoding of parenthesizations produced by simple iteration starting from empty parentheses and where each successive parenthesization is obtained from the previous by reflecting it as a general tree/parenthesization, then adding an extra stem below the root and then reflecting the underlying binary tree.
Original entry on oeis.org
0, 10, 1010, 101100, 10110010, 1011100100, 101100110100, 10111001001100, 1011100110100010, 101110011010011000, 10110011101001100010, 1011110010011011000100, 101100111011010001100100
Offset: 0
This demonstrates how to get the fourth term 10110010 from the 3rd term 101100. The corresponding binary and general trees plus parenthesizations are shown. The first operation reflects the general tree, the second adds a new stem under the root and the third reflects the underlying binary tree, which induces changes on the corresponding general tree:
..............................................
.....\/................\/\/..........\/\/.....
......\/......\/\/......\/............\/......
.....\/........\/........\/..........\/.......
......(A057164).(A057548)..(A057163)..........
........................o.....................
........................|.....................
........o.....o.........o...o.........o.......
........|.....|..........\./..........|.......
....o...o.....o...o.......o.........o.o.o.....
.....\./.......\./........|..........\|/......
......*.........*.........*...........*.......
..[()(())]..[(())()]..[((())())]..[()(())()]..
...101100....110010....11100100....10110010...
Original entry on oeis.org
42, 240, 916, 3748, 14960, 62104, 248176, 969304, 3876576, 15962544, 63772488, 248169896, 993554240, 4086635408, 16350541128, 63529835824, 254129143040, 1046249323840, 4184725760584, 16276030608712, 65054467548432, 267635134298624
Offset: 1
Original entry on oeis.org
44, 232, 920, 3876, 14936, 60568, 248240, 996440, 3876264, 15524272, 63773584, 255477160, 993549616, 3970767760, 16350559552, 65386339632, 254129067336, 1016476056896, 4184726043136, 16740063237448, 65054466609736, 260416091191808
Offset: 1
Original entry on oeis.org
0, 2, 10, 44, 178, 740, 2868, 11852, 47522, 190104, 735842, 3090116, 11777124, 48557252, 194656036, 778669672, 3117617996, 12677727330, 49850271300, 192901051976, 795560529352, 3243898094388, 12977884832332, 51055591319170
Offset: 0
Original entry on oeis.org
0, 2, 12, 56, 228, 920, 3684, 14744, 58980, 235928, 943716, 3774872, 15099492, 60397976, 241591908, 966367640, 3865470564, 15461882264, 61847529060, 247390116248, 989560464996, 3958241859992, 15832967439972
Offset: 0
Original entry on oeis.org
42, 212, 992, 3876, 15448, 64644, 252056, 989988, 4108676, 16147220, 63393540, 266083460, 1047285272, 4245874244, 16903342544, 67034166420, 274274527940, 1068738181764, 4246566244100, 17369295361736, 67322784388376, 269731897678032
Offset: 1
Original entry on oeis.org
44, 216, 968, 3860, 16132, 62064, 247236, 1044612, 4073156, 16161828, 64513624, 253336008, 1046901060, 4267950372, 16347521428, 68075401492, 268150646664, 1086041921700, 4254535157576, 17346201751972, 66879000490408, 276319489325472
Offset: 1
A179417
a(n) is the binary number (shown here in decimal) constructed from quadratic residues of 65537 in range [(n^2)+1,(n+1)^2] in such a way that quadratic residues are mapped to 1-bits, and non-quadratic residues (as well as the multiples of 65537) to 0-bits, with the lower end of range mapped to less significant, and the higher end of range to more significant bits.
Original entry on oeis.org
1, 5, 24, 104, 279, 2001, 4131, 17453, 88826, 362532, 1655660, 6120642, 25376649, 128526482, 301370205, 1756488602, 8046359747, 30854867177, 73845140753, 488906501177, 2106640948770, 6573967883049, 29711211505300
Offset: 0
In the range [(2^2)+1, (2+1)^2] (i.e., [5,9]) we have A165471(5)=A165471(6)=A165471(7)=-1 and A165471(8)=A165471(9)=+1, i.e., there are quadratic non-residues at points 5, 6 and 7, and quadratic residues at 8 and 9, so we construct a binary number 11000, which is 24 in decimal, thus a(2)=24.
Original entry on oeis.org
7, 22, 61, 192, 575, 2024, 6090, 20324, 81824, 248673, 935492, 3249468
Offset: 1
Showing 1-10 of 10 results.
Comments