cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A122230 a(n) = A007088(A122229(n)).

Original entry on oeis.org

0, 10, 1100, 111000, 11100100, 1110011000, 111001100100, 11100110011000, 1110011001100100, 111001100110011000, 11100110011001100100, 1110011001100110011000, 111001100110011001100100
Offset: 0

Views

Author

Antti Karttunen, Sep 14 2006

Keywords

Crossrefs

A080070 Decimal encoding of parenthesizations produced by simple iteration starting from empty parentheses and where each successive parenthesization is obtained from the previous by reflecting it as a general tree/parenthesization, then adding an extra stem below the root and then reflecting the underlying binary tree.

Original entry on oeis.org

0, 10, 1010, 101100, 10110010, 1011100100, 101100110100, 10111001001100, 1011100110100010, 101110011010011000, 10110011101001100010, 1011110010011011000100, 101100111011010001100100
Offset: 0

Views

Author

Antti Karttunen, Jan 27 2003

Keywords

Comments

Corresponding Lisp/Scheme S-expressions are (), (()), (()()), (()(())), (()(())()), (()((())())), (()(())(()())), ...
Conjecture: only the terms in positions 0,1,2 and 4 are symmetric, i.e., A057164(A080068(n)) = A080068(n) (equivalently: A036044(A080069(n)) = A080069(n)) only when n is one of {0,1,2,4}. If this is true, then the formula given in A079438 is exact. I (AK) have checked this up to n=404631 with no other occurrence of a symmetric (general) tree.

Examples

			This demonstrates how to get the fourth term 10110010 from the 3rd term 101100. The corresponding binary and general trees plus parenthesizations are shown. The first operation reflects the general tree, the second adds a new stem under the root and the third reflects the underlying binary tree, which induces changes on the corresponding general tree:
..............................................
.....\/................\/\/..........\/\/.....
......\/......\/\/......\/............\/......
.....\/........\/........\/..........\/.......
......(A057164).(A057548)..(A057163)..........
........................o.....................
........................|.....................
........o.....o.........o...o.........o.......
........|.....|..........\./..........|.......
....o...o.....o...o.......o.........o.o.o.....
.....\./.......\./........|..........\|/......
......*.........*.........*...........*.......
..[()(())]..[(())()]..[((())())]..[()(())()]..
...101100....110010....11100100....10110010...
		

Crossrefs

Compare to similar Wolframesque plots given in A122229, A122232, A122235, A122239, A122242, A122245. See also A079438, A080067, A080071, A057119.

Formula

a(n) = A007088(A080069(n)) = A063171(A080068(n)).

A122242 a(n) = A014486(A122241(n)).

Original entry on oeis.org

42, 240, 916, 3748, 14960, 62104, 248176, 969304, 3876576, 15962544, 63772488, 248169896, 993554240, 4086635408, 16350541128, 63529835824, 254129143040, 1046249323840, 4184725760584, 16276030608712, 65054467548432, 267635134298624
Offset: 1

Views

Author

Antti Karttunen, Sep 14 2006

Keywords

Comments

Question: to which Wolfram's class does this simple program belong, class 3 or class 4, or is such categorization at all applicable here?

Crossrefs

Cf. A014486, A057548, A082358, A122237, A122241, A122243 (same sequence in binary).
Compare to similar Wolframesque plots given in A080070, A122229, A122232, A122235, A122239, A122245.
Cf. also A376402, A376412.

Programs

  • Python
    # See the Links section

Formula

For n >= 1, a(1+n) = 2*a(n) XOR A376402(n), a(4+n) = 16*a(n) XOR A376412(n). - Antti Karttunen, Sep 23 2024

A122245 a(n) = A014486(A122244(n)).

Original entry on oeis.org

44, 232, 920, 3876, 14936, 60568, 248240, 996440, 3876264, 15524272, 63773584, 255477160, 993549616, 3970767760, 16350559552, 65386339632, 254129067336, 1016476056896, 4184726043136, 16740063237448, 65054466609736, 260416091191808
Offset: 1

Views

Author

Antti Karttunen, Sep 14 2006

Keywords

Comments

Questions: to which Wolfram's class does this simple program belong, class 3 or class 4? (Is that classification applicable here? This is not 1D CA, although it may look like one).
Does the "central skyscraper" continue widening forever? (see the image for up to 16384th generation) At what specific points it widens? (A new sequence for that). How does that differ from A122242 and similar sister sequences, with different starting conditions?
Related comments in A179777.

Crossrefs

A122246 shows the same sequence in binary. Compare to similar Wolframesque plots given in A080070, A122229, A122232, A122235, A122239, A122242, A179755, A179757. Cf. also A179777, A179762, A179417.

A080069 a(n) = A014486(A080068(n)).

Original entry on oeis.org

0, 2, 10, 44, 178, 740, 2868, 11852, 47522, 190104, 735842, 3090116, 11777124, 48557252, 194656036, 778669672, 3117617996, 12677727330, 49850271300, 192901051976, 795560529352, 3243898094388, 12977884832332, 51055591319170
Offset: 0

Views

Author

Antti Karttunen, Jan 27 2003

Keywords

Comments

Note that A080068 can be also obtained as iteration of A072795 o A057506.

Crossrefs

Same sequence in binary: A080070. Compare with similar Wolframesque plots given in A122229, A122232, A122235, A122239, A122242, A122245, A328111.
Cf. A179758.

Programs

  • Python
    # See attached program

Extensions

Python program and Wolfram-like plot added by Antti Karttunen, Sep 14 2006

A122232 a(n) = A014486(A122231(n)).

Original entry on oeis.org

42, 212, 992, 3876, 15448, 64644, 252056, 989988, 4108676, 16147220, 63393540, 266083460, 1047285272, 4245874244, 16903342544, 67034166420, 274274527940, 1068738181764, 4246566244100, 17369295361736, 67322784388376, 269731897678032
Offset: 1

Views

Author

Antti Karttunen, Sep 14 2006

Keywords

Crossrefs

A122233 shows the same sequence in binary. Compare to similar Wolframesque plots given in A080070, A122229, A122235, A122239, A122242, A122245.

A122235 a(n) = A014486(A122234(n)).

Original entry on oeis.org

44, 216, 968, 3860, 16132, 62064, 247236, 1044612, 4073156, 16161828, 64513624, 253336008, 1046901060, 4267950372, 16347521428, 68075401492, 268150646664, 1086041921700, 4254535157576, 17346201751972, 66879000490408, 276319489325472
Offset: 1

Views

Author

Antti Karttunen, Sep 14 2006

Keywords

Crossrefs

A122236 shows the same sequence in binary. Compare to similar Wolframesque plots given in A080070, A122229, A122232, A122239, A122242, A122245.

A122239 a(n) = A014486(A122238(n)).

Original entry on oeis.org

52, 240, 964, 3972, 15556, 64532, 248288, 988964, 4164356, 15899248, 64719124, 257019652, 1070118936, 4197239188, 16299415152, 65592597568, 259741591312, 1093901323332, 4233842104068, 16616683414632, 70137217092164
Offset: 1

Views

Author

Antti Karttunen, Sep 14 2006

Keywords

Comments

A122240 shows the same sequence in binary.

Crossrefs

Compare to similar Wolframesque plots given in A080070, A122229, A122232, A122235, A122242, A122245.

A080675 a(n) = (5*4^n - 8)/6.

Original entry on oeis.org

2, 12, 52, 212, 852, 3412, 13652, 54612, 218452, 873812, 3495252, 13981012, 55924052, 223696212, 894784852, 3579139412, 14316557652, 57266230612, 229064922452, 916259689812, 3665038759252, 14660155037012, 58640620148052, 234562480592212, 938249922368852
Offset: 1

Views

Author

N. J. A. Sloane, Mar 02 2003

Keywords

Comments

These numbers have a simple binary pattern: 10,1100,110100,11010100,1101010100, ... i.e., the n-th term has a binary expansion 1(10){n-1}0, that is, there are n-1 10's between the most significant 1 and the least significant 0.

Crossrefs

a(n) = A072197(n-1) - 1 = A014486(|A106191(n)|). a(n) = A079946(A020988(n-2)) for n>=2. Cf. also A122229.

Programs

Formula

a(1)=2, a(2)=12, a(n)=5*a(n-1)-4*a(n-2). - Harvey P. Dale, Oct 16 2012

Extensions

Further comments added by Antti Karttunen, Sep 14 2006

A122228 Iterates of A122227, starting from 0.

Original entry on oeis.org

0, 1, 3, 8, 20, 55, 160, 493, 1579, 5212, 17595, 60462, 210749, 743284, 2647461, 9509504
Offset: 0

Views

Author

Antti Karttunen, Sep 14 2006

Keywords

Crossrefs

Programs

Showing 1-10 of 11 results. Next