A122247 Partial sums of A005187.
0, 1, 4, 8, 15, 23, 33, 44, 59, 75, 93, 112, 134, 157, 182, 208, 239, 271, 305, 340, 378, 417, 458, 500, 546, 593, 642, 692, 745, 799, 855, 912, 975, 1039, 1105, 1172, 1242, 1313, 1386, 1460, 1538, 1617, 1698, 1780, 1865, 1951, 2039, 2128, 2222, 2317, 2414
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Hsien-Kuei Hwang, Svante Janson and Tsung-Hsi Tsai, Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, 13:4 (2017), #47. Also first authors' copy, 2016. See example 6.2.
Crossrefs
Cf. A005187 (first differences).
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 0, b(iquo(n, 2))+n) end: a:= proc(n) option remember; `if`(n=0, 0, b(n)+a(n-1)) end: seq(a(n), n=0..50); # Alois P. Heinz, Jan 25 2022
-
Mathematica
Accumulate[Table[2n-Count[IntegerDigits[2 n,2],1],{n,0,70}]] (* Harvey P. Dale, Oct 22 2011 *)
Formula
a(n) = Sum_{k=1..n} Sum_{j=0..n} floor(k/2^j).
G.f.: (1/(1-x))*Sum_{k>=0} x^(2^k)/((1-x)*(1-x^(2^k))).