cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122257 Characteristic function of Pierpont primes (A005109).

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 29 2006

Keywords

Crossrefs

Cf. A005109, A010051, A065333, A122258 (partial sums).

Programs

  • Mathematica
    smooth3Q[n_] := n == 2^IntegerExponent[n, 2]*3^IntegerExponent[n, 3];
    a[n_] := Boole[PrimeQ[n] && smooth3Q[n - 1]];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 16 2021 *)
  • PARI
    is3smooth(n) = my(m = n >> valuation(n, 2)); m == 3^valuation(m, 3);
    a(n) = isprime(n) && is3smooth(n-1); \\ Amiram Eldar, May 14 2025
  • Scheme
    (define (A122257 n) (if (= 1 n) 0 (if (= 1 (A065333 (- n 1))) (A010051 n) 0)))
    (define (A065333 n) (if (= 1 (A038502 (A000265 n))) 1 0))
    ;; Antti Karttunen, Dec 07 2017
    

Formula

a(n) = A010051(n) * A065333(n-1).
a(n) = if (n is prime) and (n-1 is 3-smooth) then 1 else 0.
a(n) = if n=1 then 0 else A122258(n) - A122258(n-1);
a(A122259(n)) = 0, a(A005109(n)) = 1.