cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122276 If b(n-1) + b(n-2) < n then a(n) = 0, otherwise a(n) = 1, where b(i) = A096535(i).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1
Offset: 2

Views

Author

Klaus Brockhaus, Aug 29 2006

Keywords

Comments

Conjecture: lim {n -> infinity} x_n / y_n = 1, where x_n is the number of j <= n such that A096535(j) = A096535(j-1) + A096535(j-2) and y_n is the number of j <= n such that A096535(j) = A096535(j-1) + A096535(j-2) - j. Computational support: x_n / y_n = 0.9999917 for n = 10^9.

Crossrefs

Programs

  • Mathematica
    f[s_] := f[s] = Append[s, Mod[s[[ -2]] + s[[ -1]], Length[s]]]; t = Nest[f, {1, 1}, 106]; s = {}; Do[AppendTo[s, If[t[[n]] + t[[n + 1]] < n + 1, 0, 1]], {n, 105}]; s (* Robert G. Wilson v Sep 02 2006 *)
  • PARI
    {m=107;a=1;b=1;for(n=2,m,d=divrem(a+b,n);print1(d[1],",");a=b;b=d[2])}

Formula

a(n) = floor((A096535(n-1)+A096535(n-2))/n)