cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A057163 Signature-permutation of a Catalan automorphism: Reflect a rooted plane binary tree; Deutsch's 1998 involution on Dyck paths.

Original entry on oeis.org

0, 1, 3, 2, 8, 7, 6, 5, 4, 22, 21, 20, 18, 17, 19, 16, 15, 13, 12, 14, 11, 10, 9, 64, 63, 62, 59, 58, 61, 57, 55, 50, 49, 54, 48, 46, 45, 60, 56, 53, 47, 44, 52, 43, 41, 36, 35, 40, 34, 32, 31, 51, 42, 39, 33, 30, 38, 29, 27, 26, 37, 28, 25, 24, 23, 196, 195, 194, 190, 189
Offset: 0

Views

Author

Antti Karttunen, Aug 18 2000

Keywords

Comments

Deutsch shows in his 1999 paper that this automorphism maps the number of doublerises of Dyck paths to number of valleys and height of the first peak to the number of returns, i.e., that A126306(n) = A127284(a(n)) and A126307(n) = A057515(a(n)) hold for all n.
The A000108(n-2) n-gon triangularizations can be reflected over n axes of symmetry, which all can be generated by appropriate compositions of the permutations A057161/A057162 and A057163.
Composition with A057164 gives signature permutation for Donaghey's Map M (A057505/A057506). Embeds into itself in scale n:2n+1 as a(n) = A083928(a(A080298(n))). A127302(a(n)) = A127302(n) and A057123(A057163(n)) = A057164(A057123(n)) hold for all n.

Examples

			This involution (self-inverse permutation) of natural numbers is induced when we reflect the rooted plane binary trees encoded by A014486. E.g., we have A014486(5) = 44 (101100 in binary), A014486(7) = 52 (110100 in binary) and these encode the following rooted plane binary trees, which are reflections of each other:
    0   0             0   0
     \ /               \ /
      1   0         0   1
       \ /           \ /
    0   1             1   0
     \ /               \ /
      1                 1
thus a(5)=7 and a(7)=5.
		

Crossrefs

This automorphism conjugates between the car/cdr-flipped variants of other automorphisms, e.g., A057162(n) = a(A057161(a(n))), A069768(n) = a(A069767(a(n))), A069769(n) = a(A057508(a(n))), A069773(n) = a(A057501(a(n))), A069774(n) = a(A057502(a(n))), A069775(n) = a(A057509(a(n))), A069776(n) = a(A057510(a(n))), A069787(n) = a(A057164(a(n))).
Row 1 of tables A122201 and A122202, that is, obtained with FORK (and KROF) transformation from even simpler automorphism *A069770. Cf. A122351.

Programs

  • Maple
    a(n) = A080300(ReflectBinTree(A014486(n)))
    ReflectBinTree := n -> ReflectBinTree2(n)/2; ReflectBinTree2 := n -> (`if`((0 = n),n,ReflectBinTreeAux(A030101(n))));
    ReflectBinTreeAux := proc(n) local a,b; a := ReflectBinTree2(BinTreeLeftBranch(n)); b := ReflectBinTree2(BinTreeRightBranch(n)); RETURN((2^(A070939(b)+A070939(a))) + (b * (2^(A070939(a)))) + a); end;
    NextSubBinTree := proc(nn) local n,z,c; n := nn; c := 0; z := 0; while(c < 1) do z := 2*z + (n mod 2); c := c + (-1)^n; n := floor(n/2); od; RETURN(z); end;
    BinTreeLeftBranch := n -> NextSubBinTree(floor(n/2));
    BinTreeRightBranch := n -> NextSubBinTree(floor(n/(2^(1+A070939(BinTreeLeftBranch(n))))));
  • Mathematica
    A014486Q[0] = True; A014486Q[n_] := Catch[Fold[If[# < 0, Throw[False], If[#2 == 0, # - 1, # + 1]] &, 0, IntegerDigits[n, 2]] == 0]; tree[n_] := Block[{func, num = Append[IntegerDigits[n, 2], 0]}, func := If[num[[1]] == 0, num = Drop[num, 1]; 0, num = Drop[num, 1]; 1[func, func]]; func]; A057163L[n_] := Function[x, FirstPosition[x, FromDigits[Most@Cases[tree[#] /. 1 -> Reverse@*1, 0 | 1, All, Heads -> True], 2]][[1]] - 1 & /@ x][Select[Range[0, 2^n], A014486Q]]; A057163L[11] (* JungHwan Min, Dec 11 2016 *)

Formula

a(n) = A083927(A057164(A057123(n))).

Extensions

Equivalence with Deutsch's 1998 involution realized Dec 15 2006 and entry edited accordingly by Antti Karttunen, Jan 16 2007

A122290 Signature permutations of KROF-transformations of Catalan automorphisms in table A122202.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 7, 3, 2, 1, 0, 6, 8, 4, 3, 2, 1, 0, 7, 6, 6, 5, 3, 2, 1, 0, 8, 4, 5, 4, 5, 3, 2, 1, 0, 9, 5, 7, 6, 6, 6, 3, 2, 1, 0, 10, 18, 8, 7, 4, 5, 6, 3, 2, 1, 0, 11, 17, 9, 8, 7, 4, 4, 4, 3, 2, 1, 0, 12, 20, 10, 12, 8, 7, 5, 5, 4, 3, 2, 1, 0, 13, 22, 14, 13, 15
Offset: 0

Views

Author

Antti Karttunen, Sep 01 2006

Keywords

Comments

Row n is the signature permutation of the Catalan automorphism which is obtained from the n-th automorphism in the table A122202 with the recursion scheme "KROF", or equivalently row n is obtained as KROF(KROF(n-th row of A089840)). See A122202 for the description of KROF. Each row occurs only once in this table. Inverses of these permutations can be found in table A122289.

References

  • A. Karttunen, paper in preparation, draft available by e-mail.

Crossrefs

The known rows of this table: row 0 (identity permutation): A001477, row 1: A122351, row 2: A122364. See also tables A089840, A122200, A122201-A122204, A122283-A122284, A122285-A122288.

A127302 Matula-Goebel signatures for plane binary trees encoded by A014486.

Original entry on oeis.org

1, 4, 14, 14, 86, 86, 49, 86, 86, 886, 886, 454, 886, 886, 301, 301, 301, 886, 886, 301, 454, 886, 886, 13766, 13766, 6418, 13766, 13766, 3986, 3986, 3986, 13766, 13766, 3986, 6418, 13766, 13766, 3101, 3101, 1589, 3101, 3101, 1849, 1849, 3101, 13766
Offset: 0

Views

Author

Antti Karttunen, Jan 16 2007

Keywords

Comments

This sequence maps A000108(n) oriented (plane) rooted binary trees encoded in range [A014137(n-1)..A014138(n-1)] of A014486 to A001190(n+1) non-oriented rooted binary trees, encoded by their Matula-Goebel numbers (when viewed as a subset of non-oriented rooted general trees). See also the comments at A127301.
If the signature-permutation of a Catalan automorphism SP satisfies the condition A127302(SP(n)) = A127302(n) for all n, then it preserves the non-oriented form of a binary tree. Examples of such automorphisms include A069770, A057163, A122351, A069767/A069768, A073286-A073289, A089854, A089859/A089863, A089864, A122282, A123492-A123494, A123715/A123716, A127377-A127380, A127387 and A127388.
A153835 divides natural numbers to same equivalence classes, i.e. a(i) = a(j) <=> A153835(i) = A153835(j) - Antti Karttunen, Jan 03 2013

Examples

			A001190(n+1) distinct values occur each range [A014137(n-1)..A014138(n-1)]. As an example, terms A014486(4..8) encode the following five plane binary trees:
........\/.....\/.................\/.....\/...
.......\/.......\/.....\/.\/.....\/.......\/..
......\/.......\/.......\_/.......\/.......\/.
n=.....4........5........6........7........8..
The trees in positions 4, 5, 7 and 8 all produce Matula-Goebel number A000040(1)*A000040(A000040(1)*A000040(A000040(1)*A000040(1))) = 2*A000040(2*A000040(2*2)) = 2*A000040(14) = 2*43 = 86, as they are just different planar representations of the one and same non-oriented tree. The tree in position 6 produces Matula-Goebel number A000040(A000040(1)*A000040(1)) * A000040(A000040(1)*A000040(1)) = A000040(2*2) * A000040(2*2) = 7*7 = 49. Thus a(4..8) = 86,86,49,86,86.
		

Crossrefs

Formula

a(n) = A127301(A057123(n)).
Can be also computed directly as a fold, see the Scheme-program. - Antti Karttunen, Jan 03 2013

A122289 Signature permutations of FORK-transformations of Catalan automorphisms in table A122201.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 7, 3, 2, 1, 0, 6, 8, 4, 3, 2, 1, 0, 7, 6, 6, 5, 3, 2, 1, 0, 8, 4, 5, 4, 5, 3, 2, 1, 0, 9, 5, 7, 6, 6, 6, 3, 2, 1, 0, 10, 18, 8, 7, 4, 5, 6, 3, 2, 1, 0, 11, 17, 9, 8, 7, 4, 4, 4, 3, 2, 1, 0, 12, 20, 10, 12, 8, 7, 5, 5, 4, 3, 2, 1, 0, 13, 22, 14, 13, 12
Offset: 0

Views

Author

Antti Karttunen, Sep 01 2006

Keywords

Comments

Row n is the signature permutation of the Catalan automorphism which is obtained from the n-th automorphism in the table A122201 with the recursion scheme "FORK", or equivalently row n is obtained as FORK(FORK(n-th row of A089840)). See A122201 for the description of FORK. Each row occurs only once in this table. Inverses of these permutations can be found in table A122290.

References

  • A. Karttunen, paper in preparation, draft available by e-mail.

Crossrefs

The known rows of this table: row 0 (identity permutation): A001477, row 1: A122351, row 2: A122363. See also tables A089840, A122200, A122201-A122204, A122283-A122284, A122285-A122288.

A129604 Signature-permutation of a Catalan automorphism, row 1654720 of A089840.

Original entry on oeis.org

0, 1, 3, 2, 8, 7, 6, 5, 4, 21, 22, 20, 17, 18, 19, 16, 15, 12, 13, 14, 11, 9, 10, 58, 59, 62, 63, 64, 57, 61, 54, 45, 46, 55, 48, 49, 50, 56, 60, 53, 44, 47, 52, 43, 40, 31, 32, 41, 34, 35, 36, 51, 42, 39, 30, 33, 37, 28, 23, 24, 38, 29, 25, 26, 27, 170, 171, 174, 175, 176
Offset: 0

Views

Author

Antti Karttunen, May 22 2007

Keywords

Comments

This involution effects the following transformation on the binary trees (labels A,B,C,D refer to arbitrary subtrees located on those nodes and () stands for a terminal node.)
.A..B.C..D.....D..C.B..A.......B...C...C...B........A...B............B...A
..\./.\./.......\./.\./.........\./.....\./..........\./..............\./.
...x...x....-->..x...x.......()..x..-->..x..()........x..()...-->..()..x..
....\./...........\./.........\./.........\./..........\./..........\./...
.....x.............x...........x...........x............x............x....
Note that automorphism *A069770 = FORK(*A129604) = KROF(*A129604). See the definitions given in A122201 and A122202.

Crossrefs

a(n) = A069770(A089864(n)) = A089864(A069770(n)). The number of cycles and the number of fixed points in range [A014137(n-1)..A014138(n-1)] of this involution are given by the same sequences as is the case for example with A069770, A057163 and A122351, that is, A007595 and zero-interspersed A000108.

A130919 Signature permutation of a Catalan automorphism: DEEPEN-transform of automorphism *A057511.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 5, 7, 8, 9, 11, 14, 16, 19, 10, 15, 12, 17, 18, 13, 20, 21, 22, 23, 25, 28, 30, 33, 37, 39, 42, 44, 47, 51, 53, 56, 60, 24, 29, 38, 43, 52, 26, 40, 31, 45, 54, 32, 46, 49, 50, 27, 41, 34, 48, 55, 35, 57, 58, 62, 36, 61, 59, 63, 64, 65, 67, 70, 72, 75, 79, 81
Offset: 0

Views

Author

Antti Karttunen, Jun 11 2007

Keywords

Comments

*A130919 = DEEPEN(*A057511) = NEPEED(*A057511) = DEEPEN(DEEPEN(*A057509)) = NEPEED(NEPEED(*A057509)). See A122283, A122284 for the definitions of DEEPEN and NEPEED transforms.

Crossrefs

Inverse: A130920. A122351(n) = A083927(A130919(A057123(n))). The number of cycles and the number of fixed points in range [A014137(n-1)..A014138(n-1)] of this permutation are given by A130967 and A130968. Maximum cycle sizes seems to be given by A000793 (shifted once right).

A130920 Signature permutation of a Catalan automorphism: DEEPEN-transform of automorphism *A057512.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 5, 7, 8, 9, 14, 10, 16, 19, 11, 15, 12, 17, 18, 13, 20, 21, 22, 23, 37, 24, 42, 51, 25, 38, 26, 44, 47, 27, 53, 56, 60, 28, 39, 29, 43, 52, 30, 40, 31, 45, 48, 32, 54, 49, 50, 33, 41, 34, 46, 55, 35, 57, 58, 62, 36, 61, 59, 63, 64, 65, 107, 66, 121, 149, 67
Offset: 0

Views

Author

Antti Karttunen, Jun 11 2007

Keywords

Comments

*A130920 = DEEPEN(*A057512) = NEPEED(*A057512) = DEEPEN(DEEPEN(*A057510)) = NEPEED(NEPEED(*A057510)). See A122283, A122284 for the definitions of DEEPEN and NEPEED transforms.

Crossrefs

Inverse: A130919. A122351(n) = A083927(A130920(A057123(n))).
Showing 1-7 of 7 results.