A122366 Triangle read by rows: T(n,k) = binomial(2*n+1,k), 0 <= k <= n.
1, 1, 3, 1, 5, 10, 1, 7, 21, 35, 1, 9, 36, 84, 126, 1, 11, 55, 165, 330, 462, 1, 13, 78, 286, 715, 1287, 1716, 1, 15, 105, 455, 1365, 3003, 5005, 6435, 1, 17, 136, 680, 2380, 6188, 12376, 19448, 24310, 1, 19, 171, 969, 3876, 11628, 27132, 50388, 75582, 92378, 1, 21
Offset: 0
Examples
.......... / 1 \ .......... =A062344(0,0)=A034868(0,0), ......... / 1 . \ ......... =T(0,0)=A034868(1,0), ........ / 1 2 . \ ........ =A062344(1,0..1)=A034868(2,0..1), ....... / 1 3 ... \ ....... =T(1,0..1)=A034868(3,0..1), ...... / 1 4 6 ... \ ...... =A062344(2,0..2)=A034868(4,0..2), ..... / 1 5 10 .... \ ..... =T(2,0..2)=A034868(5,0..2), .... / 1 6 15 20 ... \ .... =A062344(3,0..3)=A034868(6,0..3), ... / 1 7 21 35 ..... \ ... =T(3,0..3)=A034868(7,0..3), .. / 1 8 28 56 70 .... \ .. =A062344(4,0..4)=A034868(8,0..4), . / 1 9 36 84 126 ..... \ . =T(4,0..4)=A034868(9,0..4). Row n=2:[1,5,10] appears in the expansion ((2*x)^5)/2 = T(5,x)+5*T(3,x)+10*T(1,x). Row n=2:[1,5,10] appears in the expansion ((2*cos(phi))^5)/2 = cos(5*phi)+5*cos(3*phi)+10*cos(1*phi). The signed row n=2:[1,-5,10] appears in the expansion ((2*sin(phi))^5)/2 = sin(5*phi)-5*sin(3*phi)+10*sin(phi). The signed row n=2:[1,-5,10] appears therefore in the expansion (4-x^2)^2 = S(4,x)-5*S(2,x)+10*S(0,x). Triangle T(n,k) starts: n\k 0 1 2 3 4 5 6 7 8 9 ... 0 1 1 1 3 2 1 5 10 3 1 7 21 35 4 1 9 36 84 126 5 1 11 55 165 330 462 6 1 13 78 286 715 1287 1716 7 1 15 105 455 1365 3003 5005 6435 8 1 17 136 680 2380 6188 12376 19448 24310 9 1 19 171 969 3876 11628 27132 50388 75582 92378 ... - _Wolfdieter Lang_, Sep 18 2012 Row n=2, with F(n)=A000045(n) (Fibonacci number), l >= 0, see a comment above: F(2*l)^5 = (1*F(10*l) - 5*F(6*l) + 10*F(2*l))/25, F(2*l+1)^5 = (1*F(10*l+5) + 5*F(6*l+3) + 10*F(2*l+1))/25. - _Wolfdieter Lang_, Sep 19 2012
References
- T. J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2nd ed., Wiley, New York, 1990, pp. 54-55, Ex. 1.5.31.
Links
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 795.
- C. Lanczos, Applied Analysis (Annotated scans of selected pages)
- K. Ozeki, On Melham's sum, The Fibonacci Quart. 46/47 (2008/2009), no. 2, 107-110.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for triangles and arrays related to Pascal's triangle
Programs
-
Haskell
a122366 n k = a122366_tabl !! n !! k a122366_row n = a122366_tabl !! n a122366_tabl = f 1 a007318_tabl where f x (_:bs:pss) = (take x bs) : f (x + 1) pss -- Reinhard Zumkeller, Mar 14 2014
-
Mathematica
T[_, 0] = 1; T[n_, k_] := T[n, k] = T[n-1, k-1] 2n(2n+1)/(k(2n-k+1)); Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 01 2021 *)
Formula
T(n,0)=1; T(n,k) = T(n-1,k-1)*2*n*(2*n+1)/(k*(2*n-k+1)) for k > 0.
T(n,0)=1; for n > 0: T(n,1)=n+2; for n > 1: T(n,n) = T(n-1,n-2) + 3*T(n-1,n-1), T(n,k) = T(n-1,k-2) + 2*T(n-1,k-1) + T(n-1,k), 1 < k < n.
T(n,n) = A001700(n).
G.f.: (2*y)/((y-1)*sqrt(1-4*x*y)-4*x*y^2+(1-4*x)*y+1). - Vladimir Kruchinin, Oct 30 2020
Extensions
Chebyshev and trigonometric comments from Wolfdieter Lang, Mar 07 2007.
Typo in comments fixed, thanks to Philippe Deléham, who indicated this.
Comments