cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122366 Triangle read by rows: T(n,k) = binomial(2*n+1,k), 0 <= k <= n.

Original entry on oeis.org

1, 1, 3, 1, 5, 10, 1, 7, 21, 35, 1, 9, 36, 84, 126, 1, 11, 55, 165, 330, 462, 1, 13, 78, 286, 715, 1287, 1716, 1, 15, 105, 455, 1365, 3003, 5005, 6435, 1, 17, 136, 680, 2380, 6188, 12376, 19448, 24310, 1, 19, 171, 969, 3876, 11628, 27132, 50388, 75582, 92378, 1, 21
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 30 2006

Keywords

Comments

Sum of n-th row = A000302(n) = 4^n.
Central terms give A052203.
Reversal of A111418. - Philippe Deléham, Mar 22 2007
Coefficient triangle for the expansion of one half of odd powers of 2*x in terms of Chebyshev's T-polynomials: ((2*x)^(2*n+1))/2 = Sum_{k=0..n} a(n,k)*T(2*(n-k)+1,x) with Chebyshev's T-polynomials. See A053120. - Wolfdieter Lang, Mar 07 2007
The signed triangle T(n,k)*(-1)^(n-k) appears in the formula ((2*sin(phi))^(2*n+1))/2 = Sum_{k=0..n} ((-1)^(n-k))*a(n,k)*sin((2*(n-k)+1)*phi). - Wolfdieter Lang, Mar 07 2007
The signed triangle T(n,k)*(-1)^(n-k) appears therefore in the formula (4-x^2)^n = Sum_{k=0..n} ((-1)^(n-k))*a(n,k)*S(2*(n-k),x) with Chebyshev's S-polynomials. See A049310 for S(n,x). - Wolfdieter Lang, Mar 07 2007
From Wolfdieter Lang, Sep 18 2012: (Start)
The triangle T(n,k) appears also in the formula F(2*l+1)^(2*n+1) = (1/5^n)*Sum_{k=0..n} T(n,k)*F((2*(n-k)+1)*(2*l+1)), l >= 0, n >= 0, with F=A000045 (Fibonacci).
The signed triangle Ts(n,k):=T(n,k)*(-1)^k appears also in the formula
F(2*l)^(2*n+1) = (1/5^n)*Sum_{k=0..n} Ts(n,k)*F((2(n-k)+1)*2*l), l >= 0, n >= 0, with F=A000045 (Fibonacci).
This is Lemma 2 of the K. Ozeki reference, p. 108, written for odd and even indices separately.
(End)

Examples

			.......... / 1 \ .......... =A062344(0,0)=A034868(0,0),
......... / 1 . \ ......... =T(0,0)=A034868(1,0),
........ / 1 2 . \ ........ =A062344(1,0..1)=A034868(2,0..1),
....... / 1 3 ... \ ....... =T(1,0..1)=A034868(3,0..1),
...... / 1 4 6 ... \ ...... =A062344(2,0..2)=A034868(4,0..2),
..... / 1 5 10 .... \ ..... =T(2,0..2)=A034868(5,0..2),
.... / 1 6 15 20 ... \ .... =A062344(3,0..3)=A034868(6,0..3),
... / 1 7 21 35 ..... \ ... =T(3,0..3)=A034868(7,0..3),
.. / 1 8 28 56 70 .... \ .. =A062344(4,0..4)=A034868(8,0..4),
. / 1 9 36 84 126 ..... \ . =T(4,0..4)=A034868(9,0..4).
Row n=2:[1,5,10] appears in the expansion ((2*x)^5)/2 = T(5,x)+5*T(3,x)+10*T(1,x).
Row n=2:[1,5,10] appears in the expansion ((2*cos(phi))^5)/2 = cos(5*phi)+5*cos(3*phi)+10*cos(1*phi).
The signed row n=2:[1,-5,10] appears in the expansion ((2*sin(phi))^5)/2 = sin(5*phi)-5*sin(3*phi)+10*sin(phi).
The signed row n=2:[1,-5,10] appears therefore in the expansion (4-x^2)^2 = S(4,x)-5*S(2,x)+10*S(0,x).
Triangle T(n,k) starts:
  n\k 0  1   2   3    4     5     6     7     8     9  ...
  0   1
  1   1  3
  2   1  5  10
  3   1  7  21  35
  4   1  9  36  84  126
  5   1 11  55 165  330   462
  6   1 13  78 286  715  1287  1716
  7   1 15 105 455 1365  3003  5005  6435
  8   1 17 136 680 2380  6188 12376 19448 24310
  9   1 19 171 969 3876 11628 27132 50388 75582 92378
  ...  - _Wolfdieter Lang_, Sep 18 2012
Row n=2, with F(n)=A000045(n) (Fibonacci number), l >= 0, see a comment above:
F(2*l)^5   = (1*F(10*l) - 5*F(6*l) + 10*F(2*l))/25,
F(2*l+1)^5 = (1*F(10*l+5) + 5*F(6*l+3) + 10*F(2*l+1))/25.
- _Wolfdieter Lang_, Sep 19 2012
		

References

  • T. J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2nd ed., Wiley, New York, 1990, pp. 54-55, Ex. 1.5.31.

Crossrefs

Cf. A062344.
Odd numbered rows of A008314. Even numbered rows of A008314 are A127673.

Programs

  • Haskell
    a122366 n k = a122366_tabl !! n !! k
    a122366_row n = a122366_tabl !! n
    a122366_tabl = f 1 a007318_tabl where
       f x (_:bs:pss) = (take x bs) : f (x + 1) pss
    -- Reinhard Zumkeller, Mar 14 2014
  • Mathematica
    T[_, 0] = 1;
    T[n_, k_] := T[n, k] = T[n-1, k-1] 2n(2n+1)/(k(2n-k+1));
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 01 2021 *)

Formula

T(n,0)=1; T(n,k) = T(n-1,k-1)*2*n*(2*n+1)/(k*(2*n-k+1)) for k > 0.
T(n,0)=1; for n > 0: T(n,1)=n+2; for n > 1: T(n,n) = T(n-1,n-2) + 3*T(n-1,n-1), T(n,k) = T(n-1,k-2) + 2*T(n-1,k-1) + T(n-1,k), 1 < k < n.
T(n,n) = A001700(n).
T(n,k) = A034868(2*n+1,k) = A007318(2*n+1,k), 0 <= k <= n;
G.f.: (2*y)/((y-1)*sqrt(1-4*x*y)-4*x*y^2+(1-4*x)*y+1). - Vladimir Kruchinin, Oct 30 2020

Extensions

Chebyshev and trigonometric comments from Wolfdieter Lang, Mar 07 2007.
Typo in comments fixed, thanks to Philippe Deléham, who indicated this.