A122395 Primes of the form p^k - p^(k-1) - 1, with p prime and k>1.
3, 5, 7, 17, 19, 31, 41, 53, 109, 127, 271, 293, 499, 811, 929, 2027, 2161, 3659, 4373, 4421, 4969, 8191, 9311, 10099, 13121, 13309, 16001, 17029, 19181, 22051, 32579, 38611, 57839, 72091, 78607, 93941, 109229, 128521, 131071, 143261, 157211
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Andreas Stein and H. C. Williams, Explicit primality criteria for (p-1)p^n-1, Math. Comp. 69 (2000), 1721-1734.
Crossrefs
Cf. A122396.
Programs
-
Maple
N:= 10^6: # for terms <= N p:= 1: R:= NULL: do p:= nextprime(p); if p^2 - p - 1 > N then break fi; for k from 2 do q:= p^k - p^(k-1)-1; if q > N then break fi; if isprime(q) then R:= R, q fi; od od: sort(convert({R},list)); # Robert Israel, Mar 12 2023
-
Mathematica
nn=10^6; lst={}; n=1; While[p=Prime[n]; k=2; While[m=p^k-p^(k-1)-1; m
2, n++ ]; lst=Union[lst]
Comments