cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122410 a(n) is the sum of j's for those k's, 1 <= k <= n, where gcd(k,n) = p^j, p = prime.

Original entry on oeis.org

0, 1, 1, 3, 1, 3, 1, 7, 4, 5, 1, 8, 1, 7, 6, 15, 1, 10, 1, 14, 8, 11, 1, 18, 6, 13, 13, 20, 1, 14, 1, 31, 12, 17, 10, 26, 1, 19, 14, 32, 1, 20, 1, 32, 22, 23, 1, 38, 8, 26, 18, 38, 1, 31, 14, 46, 20, 29, 1, 36, 1, 31, 30, 63, 16, 32, 1, 50, 24, 34, 1, 58, 1, 37, 32, 56, 16, 38, 1, 68, 40
Offset: 1

Views

Author

Leroy Quet, Sep 02 2006

Keywords

Examples

			The positive integers k, k <= 12, where gcd(k,12) = a power of a prime, are 1, 2, 3, 4, 8, 9 and 10; gcd(1,12) = p^0, gcd(2,12) = 2^1, gcd(3,12) = 3^1, gcd(4,12) = 2^2, gcd(8,12) = 2^2, gcd(9,12) = 3^1 and gcd(10,12) = 2^1. The sum of the exponents raising the primes is 0+1+1+2+2+1+1 = 8. So a(12) = 8.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Plus @@ Last /@ Flatten[Select[FactorInteger[GCD[Range[n], n]], Length[ # ] == 1 &], 1]; Table[f[n], {n, 80}] (* Ray Chandler, Sep 06 2006 *)
    a[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; n * Times @@ (1-1/p) * Total[p*(1-1/p^e)/(p - 1)^2]]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 21 2025 *)
  • PARI
    A122410(n) = sum(k=1,n,isprimepower(gcd(n,k))); \\ Antti Karttunen, Feb 25 2018
    
  • PARI
    a(n) = {my(f = factor(n), p = f[,1], e = f[,2]); eulerphi(f) * sum(i = 1, #p, p[i] * (1 - 1/p[i]^e[i]) / (p[i] - 1)^2);} \\ Amiram Eldar, Jun 21 2025

Formula

From Ridouane Oudra, Jun 06 2025: (Start)
a(p^m) = (p^m-1)/(p-1), for p prime and m >= 0.
a(n) = Sum_{p|n, p prime} phi(n/p), for n a squarefree.
More generally, for all n we have:
a(n) = Sum_{d|n, d is a prime power} A100995(d)*phi(n/d).
a(n) = Sum_{p|n, p prime} ((p^v(n,p)-1)/(p-1))*phi(n/p^v(n,p)), where p^v(n,p) is the highest power of p dividing n.
a(n) = phi(n) * Sum_{p|n, p prime} p*(1-p^(-v(n,p)))/((1-p)^2). (End)
Sum_{k=1..n} a(k) ~ c * zeta(2) * n^2 / 2, where c = Sum_{p prime} (p^2/(p^2-1)^2) = 0.68073222355480674093... . - Amiram Eldar, Jun 21 2025

Extensions

Extended by Ray Chandler, Sep 06 2006