A122442 Least k such that the Collatz (3x+1) iteration starting with k has "dropping time" A122437(n).
2, 5, 3, 11, 7, 39, 287, 231, 191, 127, 359, 511, 239, 159, 639, 283, 991, 251, 167, 111, 1695, 1307, 871, 927, 671, 155, 103, 1639, 91, 3431, 3399, 2287, 71, 6395, 47, 31, 2047, 27, 1819, 17691, 6887, 4591, 13439, 6383, 4255, 7963, 7527, 12399, 7279, 1583
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..130
Crossrefs
Cf. A122437 (allowable "dropping times" of the Collatz iteration).
Programs
-
Mathematica
With[{s = 1 + Log2[3]}, {2}~Join~Table[(k = 3; While[-1 + Length@ NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, k, # >= k &] != m, k += 2]; k), {m, Array[Floor[1 + s*#] &, 50]}] ] (* Michael De Vlieger, Apr 19 2024 *)