cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A060445 "Dropping time" in 3x+1 problem starting at 2n+1 (number of steps to reach a lower number than starting value). Also called glide(2n+1).

Original entry on oeis.org

0, 6, 3, 11, 3, 8, 3, 11, 3, 6, 3, 8, 3, 96, 3, 91, 3, 6, 3, 13, 3, 8, 3, 88, 3, 6, 3, 8, 3, 11, 3, 88, 3, 6, 3, 83, 3, 8, 3, 13, 3, 6, 3, 8, 3, 73, 3, 13, 3, 6, 3, 68, 3, 8, 3, 50, 3, 6, 3, 8, 3, 13, 3, 24, 3, 6, 3, 11, 3, 8, 3, 11, 3, 6, 3, 8, 3, 65, 3, 34, 3, 6, 3, 47, 3, 8, 3, 13, 3, 6, 3, 8, 3
Offset: 0

Views

Author

N. J. A. Sloane, Apr 07 2001

Keywords

Comments

If the starting value is even then of course the next step in the trajectory is smaller (cf. A102419).
The dropping time can be made arbitrarily large: If the starting value is of form n(2^m)-1 and m > 1, the next value is 3n(2^m)-3+1. That divided by 2 is 3n(2^(m-1))-1. It is bigger than the starting value and of the same form - substitute 3n -> n and m-1 -> m, so recursively get an increasing subsequence of m odd values. The dropping time is obviously longer than that. This holds even if Collatz conjecture were refuted. For example, m=5, n=3 -> 95, 286, 143, 430, 215, 646, 323, 970, 485, 1456, 728, 364, 182, 91. So the subsequence in reduced Collatz variant is 95, 143, 215, 323, 485. - Juhani Heino, Jul 21 2017

Examples

			3 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2, taking 6 steps, so a(1) = 6.
		

Crossrefs

A060565 gives the first lower number that is reached. Cf. A060412-A060415, A217934.
See A074473, A102419 for other versions of this sequence.
Cf. A122437 (allowable dropping times), A122442 (least k having dropping time A122437(n)).
Cf. A070165.

Programs

  • Haskell
    a060445 0 = 0
    a060445 n = length $ takeWhile (>= n') $ a070165_row n'
                where n' = 2 * n + 1
    -- Reinhard Zumkeller, Mar 11 2013
    
  • Mathematica
    nxt[n_]:=If[OddQ[n],3n+1,n/2]; Join[{0},Table[Length[NestWhileList[nxt, n,#>=n&]]-1, {n,3,191,2}]]  (* Harvey P. Dale, Apr 23 2011 *)
  • Python
    def a(n):
        if n<1: return 0
        n=2*n + 1
        N=n
        x=0
        while True:
            if n%2==0: n//=2
            else: n = 3*n + 1
            x+=1
            if nIndranil Ghosh, Apr 22 2017

Extensions

More terms from Jason Earls, Apr 08 2001 and from Michel ten Voorde Apr 09 2001
Still more terms from Larry Reeves (larryr(AT)acm.org), Apr 12 2001

A122437 Allowable values of the "dropping time" of the Collatz (3x+1) iteration.

Original entry on oeis.org

1, 3, 6, 8, 11, 13, 16, 19, 21, 24, 26, 29, 32, 34, 37, 39, 42, 44, 47, 50, 52, 55, 57, 60, 63, 65, 68, 70, 73, 75, 78, 81, 83, 86, 88, 91, 94, 96, 99, 101, 104, 106, 109, 112, 114, 117, 119, 122, 125, 127, 130, 132, 135, 138, 140, 143, 145, 148, 150, 153, 156, 158, 161
Offset: 1

Views

Author

T. D. Noe, Sep 06 2006

Keywords

Comments

Only these numbers appear in A060445, which tabulates the "dropping time" of odd numbers. Note that all even numbers have a "dropping time" of 1.
a(n) is also the number of binary digits of 6^(n-1); for example, a(4)=8 since 6^(4-1)=216 in binary is 11011000, an 8-digit number. - Julio Cesar de la Yncera, Mar 28 2009
A positive integer (x) is an allowable value if and only if (x-1)/(1+log(2)/log(3)) - floor(x/(1+log(2)/log(3))) is not negative. - K. Spage, Oct 22 2009
Here the word "allowable" means that it is necessary for a sequence of iterates starting from odd value m to arrive at a value x = f^{floor(1+n+n*log(3)/log(2))}(m) < m, where n gives the number of odds in such a sequence including m, to have undergone precisely floor(1+n+n*log(3)/log(2)) iterations of f, where f(2*m)=m, f(2*m+1)=6*m+4. However, the formula for a(n+1) does not fully account for the order of odds and evens in such a sequence because it does not account for the effects of the "+1". Thus it is unknown whether it maximizes the value x for all values m. For example, fix m = 1 and the "+1" is enough to give the trivial cycle. So it is possible that for some m we have f^{floor(1+n+n*log(3)/log(2))}(m) >= m. - Jeffrey R. Goodwin, Aug 24 2011
The indices of the powers of 3 in A006899. - Ruud H.G. van Tol, Nov 02 2022

Crossrefs

Cf. A022921 (number of 2^m between 3^n and 3^(n+1)), A122442 (least k having dropping time a(n)).
Cf. A006899.

Programs

Formula

a(1) = 1, a(n+1) = a(n) + A022921(n-1) + 1.
a(n+1) = floor(1 + n + n*log(3)/log(2)). - T. D. Noe, Sep 08 2006
a(n) = floor((1 + log(2)/log(3))*A020914(n-1)). - K. Spage, Oct 22 2009
a(n) = A020914(n-1) + n - 1. - K. Spage, Oct 23 2009 [corrected by Ruud H.G. van Tol, Nov 03 2022]
a(n) = a(n-1)+2 if 3^(n-1) < 2^(a(n-1)+2-(n-1)); a(n) = a(n-1)+3 otherwise. - V. Barbera, Aug 12 2025

Extensions

Comment corrected and edited by Jon E. Schoenfield, Feb 27 2014

A177789 Irregular triangle read by rows in which row n gives the congruences (mod 2^A020914(n)) satisfied by the numbers having dropping time A122437(n+1) in the Collatz (3x+1) iteration.

Original entry on oeis.org

0, 1, 3, 11, 23, 7, 15, 59, 39, 79, 95, 123, 175, 199, 219, 287, 347, 367, 423, 507, 575, 583, 735, 815, 923, 975, 999, 231, 383, 463, 615, 879, 935, 1019, 1087, 1231, 1435, 1647, 1703, 1787, 1823, 1855, 2031, 2203, 2239, 2351, 2587, 2591, 2907, 2975, 3119
Offset: 0

Views

Author

T. D. Noe, May 13 2010

Keywords

Comments

The dropping time is the number of Collatz iterations required to reach a lower number than starting value. Garner mentions these congruences. The first term in row n is A122442(n+1) for n > 1. The length of row n is A100982(n).
The triangle means:
numbers 0 (mod 2) and > 0 have dropping time 1;
numbers 1 (mod 4) and > 1 have dropping time 3;
numbers 3 (mod 16) have dropping time 6;
numbers 11, 23 (mod 32) have dropping time 8;
numbers 7, 15, 59 (mod 128) have dropping time 11;
numbers 39, 79, 95, 123, 175, 199, 219 (mod 256) have dropping time 13.
Theorem: a(n) can be evaluated using a directed rooted tree produced by a precise algorithm. Each node of this tree is given by a unique Diophantine equation whose only positive solutions are the integers with a finite stopping time. The algorithm generates (in a three step loop) the parity vectors which define the Diophantine equations. The two directions of the construction principle gives the tree a triangular form which extends ever more downwards with each column. There exist explicit arithmetic relationships between the parent and child vertices. As a consequence, a(n) can be generated algorithmically. The algorithm also generates A100982. - Mike Winkler, Sep 12 2017

Examples

			Triangle begins:
   0;
   1;
   3;
  11,  23;
   7,  15,  59;
  39,  79,  95, 123, 175, 199, 219;
  ...
From _Mike Winkler_, Sep 12 2017: (Start)
The beginning of the directed rooted tree produced by the algorithm of the Theorem. The triangular form can be seen clearly. The way the tree structure is sorting a(n), respectively the residue classes, mirrors the explicit arithmetic relationships mentioned in the Theorem.
3 (mod 2^4) -- 11 (mod 2^5) -- 59 (mod 2^7) -- 123 (mod 2^8) --
                    |                                |
                    |                          219 (mod 2^8) --
                    |
                    |
               23 (mod 2^5) --- 7 (mod 2^7) -- 199 (mod 2^8) --
                                    |                |
                                    |           39 (mod 2^8) --
                                    |
                                    |
                               15 (mod 2^7) --- 79 (mod 2^8) --
                                                     |
                                               175 (mod 2^8) --
                                                     |
                                                95 (mod 2^8) --
(End)
		

Crossrefs

Cf. A060445 (dropping time of odd numbers), A100982.

Programs

  • Mathematica
    DroppingTime[n_] := Module[{m=n, k=0}, If[n>1, While[m>=n, k++; If[EvenQ[m], m=m/2, m=3*m+1]]]; k]; dt=Floor[1+Range[0,20]*Log[2,6]]; e=Floor[1+Range[0,20]*Log[2,3]]; Join[{0,1}, Flatten[Table[Select[Range[3,2^e[[n]],2], DroppingTime[ # ]==dt[[n]] &], {n,2,8}]]]
  • PARI
    /* algorithm for generating the parity vectors of the Theorem, the tree structure is given by the three STEP's */
    {k=3; Log32=log(3)/log(2); limit=14; /*or limit>14*/ T=matrix(limit,60000); xn=3; /*initial tuple for n=1*/ A=[]; for(i=1, 2, A=concat(A,i)); A[1]=1; A[2]=1; T[1,1]=A; for(n=2, limit, print("n="n); Sigma=floor(1+(n+1)*Log32); d=floor(n*Log32)-floor((n-1)*Log32); Kappa=floor(n*Log32); Kappa2=floor((n-1)*Log32);r=1; v=1; until(w==0, A=[]; for(i=1, Kappa2+1, A=concat(A,i)); A=T[n-1,v]; B=[]; for(i=1, Kappa+1, B=concat(B,i)); for(i=1, Kappa2+1, B[i]=A[i]); /* STEP 1 */ if(d==1, B[k]=1; T[n,r]=B; r++; v++); if(d==2, B[k]=0; B[k+1]=1; T[n,r]=B; r++; v++); /* STEP 2 */ if(B[Kappa]==0, for(j=1, Kappa-n, B[Kappa+1-j]=B[Kappa+2-j]; B[Kappa+2-j]=0; T[n,r]=B; r++; if(B[Kappa-j]==1, break(1)))); /* STEP 3 */ w=0; for(i=n+2, Kappa+1, w=w+B[i]));k=k+d; p=1; h2=3; for(i=1, r-1, h=0; B=T[n,i]; until(B[h]==0, h++); if(h>h2, p=1; h2++; print); print(T[n,i]"  "p"  "i); p++); print)} \\ Mike Winkler, Sep 12 2017
    
  • PARI
    row(n) = if (n < 2, [n], my(v = vector(2^(A020914(n)-1), k, 2*k-1)); apply(x->2*x-1, Vec(select(x->(x == 1+A122437(n+1)), apply(A074473, v), 1)))); \\ Michel Marcus, Aug 15 2025
    
  • PARI
    row(n)={if(n<1, [0], my(r=[1], d=[2], km=2); for(i=1, n-1, my(temp1=[], temp2=[], c=if(3^(i+1)<2^(km+1),1,2)); for(j=1, #d, temp1=concat(temp1, vector(d[j]-1, m, 3*r[j]+2^(km-d[j]+m))); temp2=concat(temp2, vector(d[j]-1, m, d[j]-m+c))); km=km+c; r=temp1; d=temp2; ); vecsort(apply(x->((-x)*lift(Mod(1/3^n, 2^km)))%2^km, r)))} \\ V. Barbera, Aug 15 2025

A186008 Irregular triangle T(n,k) read by rows, in which row n has the pattern of conjectured dropping times in the Collatz iteration.

Original entry on oeis.org

2, 4, 16, 12, 32, 8, 52, 128, 40, 56, 84, 136, 160, 180, 256, 60, 80, 136, 220, 288, 296, 448, 528, 636, 688, 712, 1024, 152, 232, 384, 648, 704, 788, 856, 1000, 1204, 1416, 1472, 1556, 1592, 1624, 1800, 1972, 2008, 2120, 2356, 2360, 2676, 2744, 2888, 2912, 3064, 3328, 3444, 3680, 3832, 4096
Offset: 1

Views

Author

T. D. Noe, Feb 09 2011

Keywords

Comments

Consider A126241, the sequence of dropping times in the Collatz iteration. Only zero and the numbers in A020914 can be dropping times. The dropping times in A126241 have a definite pattern. For example, 1 appears at positions n = 2 + 2*i, for i=0,1,2,3,... Similarly, 2 appears at positions n = 5 + 4*i; 4 appears at n = 3 + 16*i; 5 appears at n = 11 + {12,32}*i; and 7 appears at 7 + {8, 52, 128}*i. In general, if we let s=A020914(r) be the r-th possible stopping time, then A126241(n) = s for n = A122442(r) + T(r)*i, where T(r) is the r-th row of this triangle. The length of row n is A186009(n). The n-th row ends with 2^A020914(n).
The frequency of the r-th dropping time s=A020914(r) can be computed as A186009(r)/2^s. The first few frequencies are 1/2, 1/4, 1/16, 1/16, 3/128, 7/256, 3/256, 15/2048, and 85/8192.
The term "stopping time" is sometimes used instead of "dropping time", but the former usually refers to A006666.
This sequence is closely related to A177789.

Examples

			The triangle begins
2
4
16
12, 32
8, 52, 128
40, 56, 84, 136, 160, 180, 256
60, 80, 136, 220, 288, 296, 448, 528, 636, 688, 712, 1024
		

References

  • J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010. See pp. 33, 35ff.

Crossrefs

Showing 1-4 of 4 results.