A100982 Number of admissible sequences of order j; related to 3x+1 problem and Wagon's constant.
1, 1, 2, 3, 7, 12, 30, 85, 173, 476, 961, 2652, 8045, 17637, 51033, 108950, 312455, 663535, 1900470, 5936673, 13472296, 39993895, 87986917, 257978502, 820236724, 1899474678, 5723030586, 12809477536, 38036848410, 84141805077, 248369601964
Offset: 1
Examples
The unique admissible sequence of order 1 is 3/2, 1/2. The unique admissible sequence of order 2 is 3/2, 3/2, 1/2, 1/2. The two admissible sequences of order 3 are 3/2, 3/2, 3/2, 1/2, 1/2 and 3/2, 3/2, 1/2, 3/2, 1/2. a(13) = 8045 = binomial(floor(5*(13-2)/3), 13-2) - Sum_{i=2..6} binomial(floor((3*(13-i)+0)/2), 13-i)*a(i) - Sum_{i=7..11} binomial(floor((3*(13-i)-1)/2), 13-i)*a(i) - Sum_{i=12..12} binomial(floor((3*(13-i)-2)/2), 13-i)*a(i) = 31824 - 4368*1 - 3003*2 - 715*3 - 495*7 - 120*12 - 28*30 - 21*85 - 5*173 - 4*476 - 1*961 - 0*2652. (Conjecture) From _Mike Winkler_, Sep 12 2017: (Start) The next table shows how Theorem 2 works. No entry is equal to zero. n = 3 4 5 6 7 8 9 10 11 12 .. |A076227(k)= --------------------------------------------------| k = 2 | 1 | 1 k = 3 | 1 1 | 2 k = 4 | 2 1 | 3 k = 5 | 3 1 | 4 k = 6 | 3 4 1 | 8 k = 7 | 7 5 1 | 13 k = 8 | 12 6 1 | 19 k = 9 | 12 18 7 1 | 38 k = 10 | 30 25 8 1 | 64 k = 11 | 30 55 33 9 1 | 128 : | : : : : .. | : --------------------------------------------------|--------- a(n) = 2 3 7 12 30 85 173 476 961 2652 .. | The entries (k,n) in this table are generated by the rule (k+1,n) = (k,n) + (k,n-1). The last value of (k+1,n) is given by k+1 = A056576(n-1), or the highest value in column n is given twice only if A022921(n-2) = 2. Then a(n) is equal to the sum of the entries in column n. For n = 7 there is 1 = 0 + 1, 5 = 1 + 4, 12 = 5 + 7, 12 = 12 + 0. Therefore a(7) = 1 + 5 + 12 + 12 = 30. The sum of row k is equal to A076227(k). (End) From _Ruud H.G. van Tol_, Dec 04 2023: (Start) A tree view. n-tree--A098294--ids-----paths-----------------a(n) 0 ._ 0 0 0 - 1 |_ 1 1 10 1 2 |_._ 2 2 1100 1 3 |_|_ 2 3-4 11010 - 11100 2 4 |_|_._ 3 5-7 1101100 - 1111000 3 5 |_|_|_ 3 8-14 11011010 - 11111000 7 6 |_|_|_._ 4 15-26 1101101100-1111110000 12 7 |_|_|_|_._ 5 27-56 ... 30 8 |_|_|_|_|_ 5 57-141 ... 85 ... For n>=1, the endpoints are at A098294(n) to the right. (End)
Links
- T. D. Noe, Table of n, a(n) for n = 1..500
- M. Chamberland, Una actualizacio del problema 3x+1, Butl. Soc. Catalana Mat. 18 (2003) 19-45.
- M. Chamberland, English translation
- Ruud H.G. van Tol, Sequence as counts of lattice walks
- Ruud H.G. van Tol, A100982 Musings
- Stan Wagon, The Collatz problem, Math. Intelligencer 7 (1985) 72-76.
- Mike Winkler, On a stopping time algorithm of the 3n + 1 function, 2011.
- Mike Winkler, On the structure and the behaviour of Collatz 3n + 1 sequences - Finite subsequences and the role of the Fibonacci sequence, arXiv:1412.0519 [math.GM], 2014.
- Mike Winkler, New results on the stopping time behaviour of the Collatz 3x + 1 function, arXiv:1504.00212 [math.GM], 2015.
- Mike Winkler, The algorithmic structure of the finite stopping time behavior of the 3x + 1 function, arXiv:1709.03385 [math.GM], 2017.
Crossrefs
Programs
-
Mathematica
(* based on Eric Roosendaal's algorithm *) nn=100; Clear[x,y]; Do[x[i]=0, {i,0,nn+1}]; x[1]=1; t=Table[Do[y[cnt]=x[cnt]+x[cnt-1], {cnt,p+1}]; Do[x[cnt]=y[cnt], {cnt,p+1}]; admis=0; Do[If[(p+1-cnt)*Log[3]
-
PARI
/* translation of the above code from T. D. Noe */ {limit=100; n=1; x=y=vector(limit+1); x[1]=1; for(b=2, limit, for(c=2, b+1, y[c]=x[c]+x[c-1]); for(c=2, b+1, x[c]=y[c]); a_n=0; for(c=1, b+1, if((b+1-c)*log(3)Mike Winkler, Feb 28 2015
-
PARI
/* algorithm for the Conjecture */ {limit=53; zn=vector(limit); zn[2]=1; zn[3]=2; zn[4]=3; zn[5]=7; zn[6]=12; f=1; e1=-1; e2=-2; for(n=7, limit, m=floor((n-1)*log(3)/log(2))-(n-1); j=(m+n-2)!/(m!*(n-2)!); if(n>6*f, if(frac(n/2)==0, e=e1, e=e2)); if(frac((n-6 )/12)==0, f++; e1=e1+2); if(frac((n-12)/12)==0, f++; e2=e2+2); Sum=a=b=0; c=1; d=5; until(c>=n-1, for(i=2+a*5+b, 1+d+a*5, if(i>11 && frac((i+2)/6)==0, b++); delta=e-a; Sum=Sum+binomial(floor((3*(n-i)+delta)/2),n-i)*zn[i]; c++); a++; for(k=3, 50, if(n>=k*6 && a==k-1, d=k+3))); zn[n]=j-Sum; print(n" "zn[n]))} \\ Mike Winkler, Jan 03 2018
-
PARI
/* cf. code for Theorem 2 */ {limit=100; /*or limit>100*/ p=q=vector(limit); c=2; w=log(3)/log(2); for(n=3, limit, p[1]=Sum=1; for(i=2, c, p[i]=p[i-1]+q[i]; Sum=Sum+p[i]); a_n=Sum; print(n" "a_n); for(i=1, c, q[i]=p[i]); d=floor(n*w)-floor((n-1)*w); if(d==2, c++)); } \\ Mike Winkler, Apr 14 2015
-
PARI
/* algorithm for Theorem 1 */ n=20; a=vector(n); log32=log(3)/log(2); {a[1]=1; for ( k=1, n-1, a[k+1]=sum( m=1,k,(-1)^(m-1)*binomial( floor( (k-m+1)*log32)+m-1,m)*a[k-m+1] ); print(k" "a[k]) ); } \\ Vladimir M. Zarubin, Sep 25 2015
-
PARI
/* algorithm for Theorem 2 */ {limit=30; /*or limit>30*/ R=matrix(limit,limit); R[2,1]=0; R[2,2]=1; for(n=2, limit, print; print1("For n="n" in column n: "); Kappa_n=floor(n*log(3)/log(2)); a_n=0; for(k=n, Kappa_n, R[k+1,n]=R[k,n]+R[k,n-1]; print1(R[k+1,n]", "); a_n=a_n+R[k+1,n]); print; print(" and the sum is a(n)="a_n))} \\ Mike Winkler, Sep 12 2017
Formula
A sequence s(k), where k=1, 2, ..., n, is *admissible* if it satisfies s(k)=3/2 exactly j times, s(k)=1/2 exactly n-j times, s(1)*s(2)*...*s(n) < 1 but s(1)*s(2)*...*s(m) > 1 for all 1 < m < n.
a(n) = (m+n-2)!/(m!*(n-2)!) - Sum_{i=2..n-1} binomial(floor((3*(n-i)+b)/2), n-i)*a(i), where m = floor((n-1)*log_2(3))-(n-1) and b assumes different integer values within the sum at intervals of 5 or 6 terms. (Conjecture)
a(n) = Sum_{k=n-1..A056576(n-1)} (k,n). (Theorem 2, cf. example)
a(1)=1, a(n) = Sum_{k=0..A020914(n-1)-n-2} A325904(k)*binomial(A020914(n-1)-k-2, n-2) for n>1. - Benjamin Lombardo, Oct 18 2019
Extensions
Two more terms from Jules Renucci (jules.renucci(AT)wanadoo.fr), Nov 02 2005
More terms from T. D. Noe, Sep 11 2006
Comments