cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Julio Cesar de la Yncera

Julio Cesar de la Yncera's wiki page.

Julio Cesar de la Yncera has authored 4 sequences.

A158333 Position of number of digits increment in the sequence of powers of 3.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 133, 135
Offset: 0

Author

Keywords

Examples

			For n=1 a(1)=3 since the sequence of powers of 3 is 1, 3, 9, 27, 81, 243, 729 and numbers of digits increase at position 1,3,5,...
		

Crossrefs

Programs

  • Maple
    A158333 := proc(n)
            1+floor(n/log10(3)) ;
    end proc:
    seq(A158333(n),n=0..20) ; # R. J. Mathar, Sep 01 2014
  • Mathematica
    a[x_] := 1 + Floor[x/Log[10, 3]]; Table[a[i], {i, 0, 20}]

Formula

a(n)=1+Floor(n/Log_10(3)) = 1+A054965(n).

Extensions

Indices in offset, example, and formula adjusted by R. J. Mathar, May 21 2009
More terms from Robert G. Wilson v, May 29 2009

A153030 Positions of even digits of Pi.

Original entry on oeis.org

3, 7, 8, 12, 17, 19, 20, 21, 22, 23, 24, 27, 29, 33, 34, 35, 36, 37, 42, 51, 53, 54, 55, 58, 60, 61, 64, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85, 86, 88, 89, 90, 93, 94, 98, 99, 102, 103, 105, 106, 107, 108, 109, 113, 114, 115, 117, 118, 119, 120
Offset: 1

Author

Keywords

Crossrefs

Cf. A000796.

Programs

  • Mathematica
    Flatten[Position[ Map[If[EvenQ[ # ], "*", # ] &, RealDigits[ N[Pi, 100]][[1]]], "*"]]
    Select[Range@140, EvenQ[RealDigits[Pi, 10, 140][[1, # ]]] &] (* Robert G. Wilson v, Dec 21 2008 *)

Extensions

More concise Mathematica coding added and sequence extended by Robert G. Wilson v, Dec 21 2008

A153032 Positions of digits of Pi that are divisible by 3.

Original entry on oeis.org

1, 6, 8, 10, 13, 15, 16, 18, 21, 23, 25, 26, 28, 31, 33, 39, 42, 43, 44, 45, 46, 47, 51, 55, 56, 59, 63, 65, 66, 70, 72, 73, 76, 78, 80, 81, 83, 86, 87, 92, 98, 99, 101, 107, 109, 112, 116, 117, 118, 119, 122, 123, 124, 128, 129, 130, 133, 138, 143, 145, 147, 160, 165
Offset: 1

Author

Keywords

Crossrefs

Cf. A000796.

Programs

  • Mathematica
    Flatten[Position[ Map[If[Divisible[ #, 3], "*", # ] &, RealDigits[ N[Pi, 100]][[1]]], "*"]]
    Select[ Range@ 169, Mod[ RealDigits[Pi, 10, 169][[1, # ]], 3] == 0 &] (* Robert G. Wilson v, Dec 21 2008 *)

Extensions

More concise Mathematica coding added and sequence extended by Robert G. Wilson v, Dec 21 2008
Name edited by Jon E. Schoenfield, Feb 27 2014

A153031 Positions of prime digits of Pi.

Original entry on oeis.org

1, 5, 7, 9, 10, 11, 14, 16, 17, 18, 22, 25, 26, 28, 29, 30, 32, 34, 40, 44, 47, 48, 49, 52, 54, 57, 62, 64, 65, 67, 74, 77, 84, 87, 90, 91, 92, 94, 97, 100, 103, 110, 112, 113, 115, 116, 121, 124, 131, 132, 134, 136, 137, 138, 140, 141, 142, 143, 144, 150, 157, 159, 161
Offset: 1

Author

Keywords

Crossrefs

Cf. A000796.

Programs

  • Mathematica
    Flatten[Position[ Map[If[PrimeQ[ # ], "*", # ] &, RealDigits[ N[Pi, 100]][[1]]], "*"]]
    Select[ Range@ 166, PrimeQ[ RealDigits[Pi, 10, 166][[1, # ]]] &] (* Robert G. Wilson v, Dec 21 2008 *)
    Flatten[Position[RealDigits[Pi,10,200][[1]],?PrimeQ]] (* _Harvey P. Dale, Mar 22 2015 *)
  • PARI
    \p 1000
    p=Vec(Str(Pi/10)); for(n=1, #p-9, if(isprime(eval(p[n+2])), print1(n", "))) \\ Jens Kruse Andersen, Jul 23 2014

Formula

a(n) = A073303(n) + 1. - Michel Marcus, May 29 2014

Extensions

More concise Mathematica coding added and sequence extended by Robert G. Wilson v, Dec 21 2008