cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122446 G.f. satisfies: A(x) = 1 + x*A(x)^2 + 2*x^2*(A(x)^2 - A(x)); equals the base sequence of pendular trinomial triangle A122445.

Original entry on oeis.org

1, 1, 2, 7, 24, 88, 336, 1321, 5316, 21788, 90640, 381750, 1624592, 6975136, 30177056, 131428917, 575765820, 2535433668, 11216757104, 49829385786, 222193501760, 994153952528, 4461915817760, 20082611971226, 90625360612296
Offset: 0

Views

Author

Paul D. Hanna, Sep 07 2006

Keywords

Comments

Functional equation for the g.f. is derived from the recurrence of the pendular triangle A122445. Iterated convolutions of this sequence with the central terms (A122447) generates all diagonals of A122445. For example: A122448 = A122446 * A122447; A122449 = A122446^2 * A122447.
Diagonal sums of triangle T with T(n,k) = 2^k*A133336(n,k). - Philippe Deléham, Nov 10 2009

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    Coefficients(R!( (1+2*x^2 -Sqrt(1-4*x-4*x^2+4*x^4))/(2*x*(1+2*x)) )); // G. C. Greubel, Mar 16 2021
  • Maple
    m:=30; S:=series( (1+2*x^2 -sqrt(1-4*x-4*x^2+4*x^4))/(2*x*(1+2*x)), x, m+1):
    seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Mar 16 2021
  • Mathematica
    CoefficientList[Series[(1+2*x^2-Sqrt[1-4*x-4*x^2+4*x^4])/(2*x*(1+2*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 17 2013 *)
  • PARI
    {a(n)=polcoeff(2/(1+2*x^2+sqrt(1-4*x-4*x^2+4*x^4+x*O(x^n))),n)}
    
  • Sage
    def A122446_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( (1+2*x^2 -sqrt(1-4*x-4*x^2+4*x^4))/(2*x*(1+2*x)) ).list()
    A122446_list(30) # G. C. Greubel, Mar 16 2021
    

Formula

G.f.: A(x) = (1 + 2*x^2 - sqrt(1 -4*x -4*x^2 +4*x^4))/(2*x*(1+2*x)).
Recurrence: (n+1)*a(n) = 2*(n-2)*a(n-1) + 12*(n-1)*a(n-2) + 8*(n-2)*a(n-3) - 4*(n-5)*a(n-4) - 8*(n-5)*a(n-5). - Vaclav Kotesovec, Sep 17 2013
a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = (1/6)*(6+sqrt(6*(10 + 2^(2/3)*(43-3*sqrt(177))^(1/3) + 2^(2/3)*(43+3*sqrt(177))^(1/3))) + sqrt(6*(20-2^(2/3)*(43-3*sqrt(177))^(1/3) - 2^(2/3)*(43+3*sqrt(177))^(1/3) + 24*sqrt(6/(10+2^(2/3)*(43-3*sqrt(177))^(1/3) + 2^(2/3)*(43+3*sqrt(177))^(1/3)))))) = 4.797536514160165558... is the root of the equation 4 - 4*d^2 - 4*d^3 + d^4 = 0 and c = 0.908214882020417619380249683... is the positive root of the equation -59 - 944*c^2 - 2032*c^4 - 320*c^6 + 5184*c^8 = 0. - Vaclav Kotesovec, Sep 17 2013, updated Mar 18 2024