A122447 Central terms of pendular trinomial triangle A122445.
1, 0, 1, 2, 8, 28, 107, 418, 1676, 6848, 28418, 119444, 507440, 2175500, 9400207, 40895602, 178984212, 787503168, 3481278734, 15454765948, 68871993872, 307981243608, 1381569997998, 6215433403188, 28036071086296
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); f:= func< x | Sqrt(1-4*x-4*x^2+4*x^4) >; Coefficients(R!( ( 1+6*x+2*x^2 -f(x) )/( 2*x*(4+3*x) ) )); // G. C. Greubel, Mar 17 2021 -
Mathematica
f[x_]:= Sqrt[1-4*x-4*x^2+4*x^4]; CoefficientList[Series[(1+6*x+2*x^2-f[x])/(2*x*(4+3*x)), {x,0,30}], x] (* G. C. Greubel, Mar 17 2021 *)
-
PARI
{a(n)=polcoeff(2*(1+2*x)/(1+6*x+2*x^2+sqrt(1-4*x-4*x^2+4*x^4+x*O(x^n))),n)}
-
Sage
def f(x): return sqrt(1-4*x-4*x^2+4*x^4) def A122447_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( ( 1+6*x+2*x^2 -f(x) )/( 2*x*(4+3*x) ) ).list() A122447_list(30) # G. C. Greubel, Mar 17 2021
Formula
G.f. satisfies: A(x) = 1+2*x - 2*x*(3+x)*A(x) + x*(4+3*x)*A(x)^2.
G.f.: A(x) = ( 1 +6*x +2*x^2 - sqrt(1 -4*x -4*x^2 +4*x^4) )/( 2*x*(4+3*x) ).
Comments