cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122447 Central terms of pendular trinomial triangle A122445.

Original entry on oeis.org

1, 0, 1, 2, 8, 28, 107, 418, 1676, 6848, 28418, 119444, 507440, 2175500, 9400207, 40895602, 178984212, 787503168, 3481278734, 15454765948, 68871993872, 307981243608, 1381569997998, 6215433403188, 28036071086296
Offset: 0

Views

Author

Paul D. Hanna, Sep 07 2006

Keywords

Comments

G.f.: A(x) = 1/(1+x - x*B(x)) = (1 + x*H(x))/(1+x) = 1 + x^2*F(x)/B(x), where B(x) is g.f. of A122446, H(x) is g.f. of A122448, F(x) is g.f. of A122450.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    f:= func< x | Sqrt(1-4*x-4*x^2+4*x^4) >;
    Coefficients(R!( ( 1+6*x+2*x^2 -f(x) )/( 2*x*(4+3*x) ) )); // G. C. Greubel, Mar 17 2021
  • Mathematica
    f[x_]:= Sqrt[1-4*x-4*x^2+4*x^4];
    CoefficientList[Series[(1+6*x+2*x^2-f[x])/(2*x*(4+3*x)), {x,0,30}], x] (* G. C. Greubel, Mar 17 2021 *)
  • PARI
    {a(n)=polcoeff(2*(1+2*x)/(1+6*x+2*x^2+sqrt(1-4*x-4*x^2+4*x^4+x*O(x^n))),n)}
    
  • Sage
    def f(x): return sqrt(1-4*x-4*x^2+4*x^4)
    def A122447_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( ( 1+6*x+2*x^2 -f(x) )/( 2*x*(4+3*x) ) ).list()
    A122447_list(30) # G. C. Greubel, Mar 17 2021
    

Formula

G.f. satisfies: A(x) = 1+2*x - 2*x*(3+x)*A(x) + x*(4+3*x)*A(x)^2.
G.f.: A(x) = ( 1 +6*x +2*x^2 - sqrt(1 -4*x -4*x^2 +4*x^4) )/( 2*x*(4+3*x) ).