cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122449 Diagonal elements A122445(n+2,n) of the pendular trinomial triangle A122445.

Original entry on oeis.org

1, 2, 6, 22, 83, 324, 1298, 5302, 22002, 92488, 392996, 1685232, 7283511, 31694460, 138746706, 610601374, 2699835614, 11988069480, 53433418716, 238986495540, 1072250526558, 4824638825032, 21765895919444, 98433111857436
Offset: 0

Views

Author

Paul D. Hanna, Sep 07 2006

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    f:= func< x | Sqrt(1-4*x-4*x^2+4*x^4) >;
    Coefficients(R!( 2/(1-2*x-2*x^2-2*x^3+4*x^4+4*x^5 +(1+2*x^2+2*x^3)*f(x)) )); // G. C. Greubel, Mar 17 2021
  • Mathematica
    f[x_] := Sqrt[1 - 4*x - 4*x^2 + 4*x^4];
    CoefficientList[Series[2/(1-2*x-2*x^2-2*x^3+4*x^4+4*x^5 +(1+2*x^2+2*x^3)*f[x]), {x,0,30}], x] (* G. C. Greubel, Mar 17 2021 *)
  • PARI
    {a(n)=local(A,B=2/(1+2*x^2+sqrt(1-4*x-4*x^2+4*x^4+x^2*O(x^n)))); A=B^2/(1+x-x*B);polcoeff(A,n,x)}
    
  • Sage
    def f(x): return sqrt(1-4*x-4*x^2+4*x^4)
    def A122449_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( 2/(1-2*x-2*x^2-2*x^3+4*x^4+4*x^5 +(1+2*x^2+2*x^3)*f(x)) ).list()
    A122449_list(30) # G. C. Greubel, Mar 17 2021
    

Formula

G.f.: A(x) = B(x)^2/(1+x -x*B(x)) where B(x) is the g.f. of A122446.
G.f.: 2/(1 -2*x -2*x^2 -2*x^3 +4*x^4 +4*x^5 +(1 +2*x^2 +2*x^3)*f(x)), where f(x) = sqrt(1 -4*x -4*x^2 +4*x^4). - G. C. Greubel, Mar 17 2021
D-finite with recurrence -4*(n+3)*(37*n-56)*a(n) +(33*n^2-357*n+1624)*a(n-1) +4*(547*n^2-620*n-554)*a(n-2) +4*(1142*n^2-2566*n-1613)*a(n-3) +16*(180*n^2-588*n+65)*a(n-4) +4*(-331*n^2+1937*n+1076)*a(n-5) +8*(-320*n^2+2107*n-617)*a(n-6) -48*(19*n-13)*(n-7)*a(n-7)=0. - R. J. Mathar, Feb 06 2025