cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122523 Coefficients of series giving the best rational approximations to e.

Original entry on oeis.org

7, 497, 71071, 18107089, 7216769351, 4145592145057, 3243346361740927, 3315690551047089761, 4291382388990897826759, 6858633609184481948847121, 13266034908146716343647359647, 30540929340877940990799507474097
Offset: 1

Views

Author

Gene Ward Smith, Sep 17 2006

Keywords

Comments

The series giving the best rational approximations to e is e = 3 - 2/a(1) + 2/a(2) - 2/a(3) + ... The continued fraction for e is [2;1,2,1,1,4,1,1,6, 1,1,8...] and the above best approximations give every third convergent, the convergents deriving from [2;1], [2;1,2,1,1], [2;1,2,1,1,4,1, 1] and so forth.

Crossrefs

Programs

  • Magma
    I:=[7,497,71071]; [n le 3 select I[n] else ((2*n-3)*(16*n^2 -3)  *Self(n-1) +(2*n+1)*(16*(n-1)^2 -3)*Self(n-2) -(2*n+1)*Self(n-3))/(2*n-3): n in [1..30]]; // G. C. Greubel, Oct 27 2024
    
  • Mathematica
    RecurrenceTable[{a[n]== ((2*n-3)*(16*n^2 -3)*a[n-1] +(2*n+1)*(16*(n-1)^2 - 3)*a[n-2] -(2*n+1)*a[n-3])/(2*n-3), a[1]==7, a[2]==497, a[3]==71071}, a, {n, 30}] (* G. C. Greubel, Oct 27 2024 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A122523
        if n<4: return (0,7,497,71071)[n]
        else: return ((2*n-3)*(16*n^2 -3)*a(n-1) +(2*n+1)*(16*(n-1)^2 -3)*a(n-2) -(2*n+1)*a(n-3))/(2*n-3)
    [a(n) for n in range(1,31)] # G. C. Greubel, Oct 27 2024

Formula

a(n+3) = (16*n^2 +96*n +141)*a(n+2) + (2*n+7)*(16*n^2 +64*n +61)/(2*n+3) * a(n+1) - (2*n+7)/(2*n+3) * a(n). This recurrence relationship is identical to A122533, for the best approximations to 1/e.