A122538 Riordan array (1, x*f(x)) where f(x)is the g.f. of A006318.
1, 0, 1, 0, 2, 1, 0, 6, 4, 1, 0, 22, 16, 6, 1, 0, 90, 68, 30, 8, 1, 0, 394, 304, 146, 48, 10, 1, 0, 1806, 1412, 714, 264, 70, 12, 1, 0, 8558, 6752, 3534, 1408, 430, 96, 14, 1, 0, 41586, 33028, 17718, 7432, 2490, 652, 126, 16, 1, 0, 206098, 164512, 89898, 39152, 14002, 4080, 938, 160, 18, 1
Offset: 0
Examples
Triangle begins: 1; 0, 1: 0, 2, 1; 0, 6, 4, 1; 0, 22, 16, 6, 1; 0, 90, 68, 30, 8, 1; 0, 394, 304, 146, 48, 10, 1; 0, 1806, 1412, 714, 264, 70, 12, 1; 0, 8558, 6752, 3534, 1408, 430, 96, 14, 1; Production matrix is: 0...1 0...2...1 0...2...2...1 0...2...2...2...1 0...2...2...2...2...1 0...2...2...2...2...2...1 0...2...2...2...2...2...2...1 0...2...2...2...2...2...2...2...1 0...2...2...2...2...2...2...2...2...1 ... - _Philippe Deléham_, Feb 09 2014
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
- G. Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973), see page 15.
Crossrefs
Programs
-
Magma
function T(n,k) // T = A122538 if k eq 0 then return 0^n; elif k eq n then return 1; else return T(n-1,k-1) + T(n-1,k) + T(n,k+1); end if; end function; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 27 2024
-
Mathematica
T[n_, n_]= 1; T[, 0]= 0; T[n, k_]:= T[n, k]= T[n-1, k-1] + T[n-1, k] + T[n, k+1]; Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* Jean-François Alcover, Jun 13 2019 *)
-
Sage
def A122538_row(n): @cached_function def prec(n, k): if k==n: return 1 if k==0: return 0 return prec(n-1,k-1)-2*sum(prec(n,k+i-1) for i in (2..n-k+1)) return [(-1)^(n-k)*prec(n, k) for k in (0..n)] for n in (0..12): print(A122538_row(n)) # Peter Luschny, Mar 16 2016
Formula
T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n,k+1) if k > 0, with T(n, 0) = 0^n, and T(n, n) = 1.
Sum_{k=0..n} T(n, k) = A001003(n).
From G. C. Greubel, Oct 27 2024: (Start)
T(2*n, n) = A103885(n).
Sum_{k=0..n} (-1)^k*T(n, k) = -A001003(n-1).
Sum_{k=0..floor(n/2)} T(n-k, k) = [n=0] + 0*[n=1] + A006603(n-2)*[n>1]. (End)
Comments