cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A339255 Leading digit of n in base 5.

Original entry on oeis.org

1, 2, 3, 4, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 1

Views

Author

Kevin Ryde, Nov 28 2020

Keywords

Crossrefs

Cf. A007091 (base 5), A073851 (partial sums).

Programs

  • Mathematica
    IntegerDigits[#,5][[1]]&/@Range[100] (* Harvey P. Dale, Sep 04 2021 *)
  • PARI
    a(n) = n\5^logint(n,5);

Formula

a(n) = floor(n / 5^floor(log_5(n))).
G.f.: (x + Sum_{k>=0} Sum_{d=2..4} (x^(d*5^k)-x^(5^(k+1))) )/(1-x).

A339256 Leading digit of n in base 6.

Original entry on oeis.org

1, 2, 3, 4, 5, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Kevin Ryde, Nov 28 2020

Keywords

Crossrefs

Cf. A007092 (base 6), A109804 (partial sums).

Programs

  • Mathematica
    Table[IntegerDigits[n,6][[1]],{n,90}] (* Harvey P. Dale, Jul 19 2023 *)
  • PARI
    a(n) = n\6^logint(n,6);

Formula

a(n) = floor(n / 6^floor(log_6(n))).
G.f.: (x + Sum_{k>=0} Sum_{d=2..5} (x^(d*6^k)-x^(6^(k+1))) )/(1-x).

A361946 If the base-4 expansion of n starts with the digit 1, then replace 2's by 3's and vice versa; if it starts with the digit 2, then replace 1's by 3's and vice versa; if it starts with the digit 3, then replace 1's by 2's and vice versa; a(0) = 0.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 6, 8, 11, 10, 9, 12, 14, 13, 15, 16, 17, 19, 18, 20, 21, 23, 22, 28, 29, 31, 30, 24, 25, 27, 26, 32, 35, 34, 33, 44, 47, 46, 45, 40, 43, 42, 41, 36, 39, 38, 37, 48, 50, 49, 51, 56, 58, 57, 59, 52, 54, 53, 55, 60, 62, 61, 63, 64, 65, 67, 66
Offset: 0

Views

Author

Rémy Sigrist, Apr 01 2023

Keywords

Comments

This sequence is a self-inverse permutation of the nonnegative integers.

Examples

			For n = 539:
- the base-4 expansion of 539 is "20123",
- it starts with the digit 2, so we replace 1's by 3's and vice versa,
- so the base-4 expansion of a(539) is "20321", and a(539) = 569.
		

Crossrefs

Programs

  • PARI
    a(n) = { my (q = digits(n, 4), m = if (#q, [ [0,1,3,2], [0,3,2,1], [0,2,1,3] ][q[1]], [0,1,2,3])); fromdigits(apply (d -> m[1+d], q), 4); }

Formula

a(n) = A163241(n) when A122587(n) = 1.
a(n) = A048647(n) when A122587(n) = 2.
a(n) = A057300(n) when A122587(n) = 3.
a(n) = n iff n = d * A000695(k) for some d in {1, 2, 3} and some k >= 0.

A273619 Table read by antidiagonals (n>1, k>0): A(n,k) = leading digit of k in base n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 3, 4, 1, 2, 1, 1, 2, 3, 4, 1, 1, 2, 1, 1, 2, 3, 4, 5, 1, 1, 2, 1, 1, 2, 3, 4, 5, 1, 1, 2, 1, 1, 1, 2, 3, 4, 5, 6, 1, 1, 2, 1, 1, 1, 2, 3, 4, 5, 6, 1, 1, 1, 2, 1, 1, 1, 2, 3, 4, 5, 6, 7, 1
Offset: 2

Views

Author

Andrey Zabolotskiy, May 30 2016

Keywords

Comments

This is a generalization of A000030.
The first occurrence of a number k in the sequence is given by A(k+1,k).

Examples

			First few rows of the array are:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1...
1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2...
1, 2, 3, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 1, 1, 1...
1, 2, 3, 4, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3...
1, 2, 3, 4, 5, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3...
1, 2, 3, 4, 5, 6, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2...
1, 2, 3, 4, 5, 6, 7, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2...
Note that the initial row is row 2.
A(3,3) corresponds to row n=3 and column k=3, and k=3 is written as 10 in base n=3, and the leading digit of 10 is 1, so A(3,3)=1.
A(12,11) corresponds to row n=12 and column k=11, and 11 is written as B in base 12, and the leading and only digit of B is B which is number 11 in decimal, so A(12,11)=11.
		

Crossrefs

Cf. A000030 (row 10), A122586 (row 3), A122587 (row 4).
Cf. A051777, A051778 (may be interpreted as arrays of last digits of k in base n).

Programs

  • Maple
    A:= (n,k) -> floor(k/n^floor(log[n](k))):
    seq(seq(A(n-k,k),k=1..n-2),n=2..20); # Robert Israel, May 31 2016
  • Mathematica
    a[n_, k_] := First[IntegerDigits[k, n]];
  • PARI
    T(n,k) = digits(k, n)[1];
    tabl(10, 10, n, k, n++; T(n,k)); \\ Michel Marcus, Jun 12 2016

Formula

From Robert Israel, May 31 2016: (Start)
A(n,k) = floor(k/n^floor(log_n(k))).
A(n,k) = k if n > k.
A(n,k) = A(n, floor(k/n)) otherwise.
G.f. of row n, G_n(x), satisfies G_n(x) = (1-x^n)/(1-x)^2 - (1+(n-1)*x^n)/(1-x) + (1-x^n)*G_n(x^n)/(1-x). (End)
Showing 1-4 of 4 results.