A122589 Expansion of 1/(1 - 11*x + 45*x^2 - 84*x^3 + 70*x^4 - 21*x^5 + x^6).
1, 11, 76, 425, 2109, 9709, 42504, 179630, 740025, 2991495, 11920740, 46981740, 183579396, 712493461, 2750450981, 10572046555, 40495806764, 154683305139, 589504177384, 2242448706435, 8517201473375, 32309383853565
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (11,-45,84,-70,21,-1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1-11*x+45*x^2 -84*x^3+70*x^4-21*x^5+x^6) )); // G. C. Greubel, Nov 29 2021 -
Maple
A122589:= proc(n) coeftayl(1/(4096-11264*x^2+11520*x^4-5376*x^6+1120*x^8-84*x^10 +x^12), x=0,2*n); %*2^(2*n+12); end: seq(A122589(n), n=0..30); # R. J. Mathar, Sep 21 2007
-
Mathematica
m=12; p[x_]:= ExpandAll[x^m*ChebyshevU[m, 1/x]]; Table[ SeriesCoefficient[ Series[2^(n+m-1)*x/p[x], {x,0,30}], n], {n,1,30,2}]
-
Sage
def A122589_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( 1/(1-11*x+45*x^2-84*x^3+70*x^4-21*x^5+x^6) ).list() A122589_list(30) # G. C. Greubel, Nov 29 2021
Formula
G.f.: 1/(1 - 11*x + 45*x^2 - 84*x^3 + 70*x^4 - 21*x^5 + x^6). - Colin Barker, Oct 16 2013
Extensions
Edited by N. J. A. Sloane, Oct 02 2006
More terms from R. J. Mathar, Sep 21 2007
New name from Colin Barker, Oct 16 2013
Comments