A122610 Triangle read by rows: T(n,k) is coefficient of x^k in Sum_{m=0..n} x^m*(1-x)^(n-m)*(-1)^[(m+1)/2]*binomial(m-[(m+1)/2],[m/2]).
1, 1, -2, 1, -3, 1, 1, -4, 3, 1, 1, -5, 6, 1, -2, 1, -6, 10, -1, -6, 1, 1, -7, 15, -6, -11, 6, 1, 1, -8, 21, -15, -15, 18, 1, -2, 1, -9, 28, -29, -15, 39, -6, -9, 1, 1, -10, 36, -49, -7, 69, -30, -21, 9, 1, 1, -11, 45, -76, 14, 105, -84, -30, 36, 1, -2, 1, -12, 55, -111, 54, 140, -182, -15, 96, -14, -12, 1, 1, -13, 66, -155
Offset: 0
Examples
1; 1, -2; 1, -3, 1; 1, -4, 3, 1; 1, -5, 6, 1, -2; 1, -6, 10, -1, -6, 1; 1, -7, 15, -6, -11, 6, 1; 1, -8, 21, -15, -15, 18, 1, -2;
Links
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
Crossrefs
Cf. A066170.
Programs
-
Mathematica
T[n_, k_] := (-1)^Floor[(k + 1)/2]*Binomial[n - Floor[(k + 1)/2], Floor[k/2]]; a = Table[CoefficientList[Sum[T[n, k]*p^k*(1 - p)^(n -k), {k, 0, n}], p], {n, 0, 10}]; Flatten[a]
-
PARI
{T(n,k)=local(A); if(k<0||k>n, 0, A=sum(k=0, n, x^k*(1-x)^(n-k)*(-1)^((k+1)\2)*binomial(n-((k+1)\2),k\2)); polcoeff(A,k))}
-
Sage
@CachedFunction def T(n,k): if n< 0: return 0 if n==0: return 1 if k == 0 else 0 h = 2*T(n-1,k) if n==1 else T(n-1,k) return T(n-1,k-1) - T(n-2,k) - h A122610 = lambda n,k: T(n,n-k) for n in (0..9): [A122610(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
Extensions
Edited by N. J. A. Sloane, Sep 24 2006
Offset set to 0 by Michel Marcus, Feb 07 2014