A122722 Number of triangulations of Delta^2 x Delta^(k-1).
1, 6, 108, 4488, 376200, 58652640, 16119956160, 7519632382080, 5788821019685760, 7197150396467808000, 14206044114169232371200, 43903287397136367836697600, 210012592354755890839147008000, 1540026232221309103088828327116800, 17170286302440610680613970557956096000, 289015112280462271460535463614055526400000
Offset: 1
Keywords
Examples
a(1) = 1 * 1! = 1. a(2) = 3 * 2! = 6. a(3) = 18 * 3! = 108. a(4) = "187 * 4! = 2244" [sic]; actually 187 * 4! = 4488. a(5) = "3135 * 5! = 188100" [sic]; actually 3135 * 5! = 376200.
Links
- J. A de Loera, Nonregular triangulations of products of simplices, Discrete Comp. Geom., 15(3) (1996), 253-264. [It may be related to this sequence.]
- J. A. de Loera, J. Rambau, and Francisco Santos, MSRI Summer School on Triangulations of point sets, Applications, Structures and Algorithms.
- J. A. De Loera, J. Rambau, and Francisco Santos, Further topics, in: Triangulations, vol 25 of Algor. Computat. Math. (2010), pp. 433-511.
- R. J. Mathar, Lozenge tilings of the equilateral triangle, arXiv:1909.06336 [math.CO], 2019.
- Francisco Santos, The Cayley trick, handwritten lecture notes; see table on p. 9.
- Francisco Santos, The Cayley trick and triangulations of products of simplices, arXiv:math/0312069 [math.CO], 2004; see Theorem 1 (p. 2).
- Francisco Santos, The Cayley trick and triangulations of products of simplices, Cont. Math. 374 (2005), pp. 151-177.
- Benjamin Frederik Schröter, Matroidal subdivisions, Dressians and tropical Grassmannians, Ph.D. Dissertation, Technische Universität Berlin, Berlin, 2018; see Appendix on p. 111.
Crossrefs
Formula
Conjectures: a(n) = n! * A273464(n, n*(n+1)/2) for n >= 1; a(n) = A011555(n-1) for n >= 2. [A273464(n,k) is defined for n >= 1 and 0 <= k <= n*(n+1)/2.] - Petros Hadjicostas, Sep 12 2019
Extensions
More terms (using the references) from Petros Hadjicostas, Sep 12 2019
Comments