cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122751 Number of essentially different semi-magic squares of order 3 with semimagic sum n.

Original entry on oeis.org

1, 2, 7, 14, 29, 49, 83, 127, 192, 273, 384, 519, 694, 902, 1162, 1466, 1835, 2260, 2765, 3340, 4011, 4767, 5637, 6609, 7714, 8939, 10318, 11837, 13532, 15388, 17444, 19684, 22149, 24822, 27747, 30906, 34345, 38045, 42055, 46355, 50996, 55957, 61292
Offset: 3

Views

Author

Christoph Gerber (christoph.gerber(AT)phbern.ch), Jun 25 2007

Keywords

Examples

			a(4)=2 because there are 2 essentially different semi-magic squares of order 3 with semi-magic sum 4: [1,1,2; 1,2,1; 2,1,1] and [1,1,2; 2,1,1; 1,2,1].
		

References

  • Christoph Gerber, "Zum Abzahlen semimagischer Quadrate" [Apparently unpublished. - R. J. Mathar, Nov 13 2011]
  • P. A. MacMahon, Combinatory Analysis, Vol II; Chelsea, New York, 1960.

Programs

  • Maple
    A131292:=proc(n) local d,e: if (n mod 4) in {0,2} then d:=-1/8 fi: if (n mod 4) in {1,3} then d:=3/32 fi: if (n mod 4) in {0} then e:=0 fi: if (n mod 4) in {1} then e:=-7/64 fi: if (n mod 4) in {2} then e:=1/8 fi: if (n mod 4) in {3} then e:=1/64 fi: return 1/64*n^4-1/32*n^3+1/32*n^2+d*n+e: end proc:
  • Mathematica
    LinearRecurrence[{3,-2,-2,4,-4,2,2,-3,1},{1,2,7,14,29,49,83,127,192},50] (* Harvey P. Dale, Jan 26 2017 *)

Formula

a(n) = 1/64*n^4-1/32*n^3+1/32*n^2+d*n+e with: d:=-1/8 if n=0 or n=2 (mod 4) d:=3/32 if n=1 or n=3 (mod 4) e:=0 if n=0 (mod 4) e:=-7/64 if n=1 (mod 4) e:=1/8 if n=2 (mod 4) e:=1/64 if n=3 (mod 4).
G.f.: -x^3*(1-x+3*x^2-x^3+x^4) / ( (1+x^2)*(1+x)^2*(x-1)^5 ). - R. J. Mathar, Nov 13 2011
a(n) = (2*n*(n-1)*(n^2-n+1)-7*(2*n-1)*(-1)^n-8*(-1)^((2*n-1+(-1)^n)/4)+1)/128. - Luce ETIENNE, Oct 29 2017