A178689
Partial sums of A122836 (number of topologies on n labeled elements in which at least one element belongs to some pair of noncomparable members of the topology).
Original entry on oeis.org
0, 0, 0, 10, 253, 6384, 208887, 9673189, 651633791, 63901292323, 9040801794022, 1825884406581355, 521181413335003984, 208402574279716434454, 115825454535371969786250, 88852094572776191675804592
Offset: 0
a(4) = 0 + 0 + 0 + 10 + 243 = 253 = 11 * 23.
A122835
Number of topologies on n labeled elements in which no element belongs to any pair of noncomparable members of the topology.
Original entry on oeis.org
1, 1, 4, 19, 112, 811, 7024, 70939, 818752, 10630891, 153371344, 2433948859, 42137351392, 790287522571, 15962014455664, 345424786466779, 7973482022972032, 195556150543703851, 5078301994885267984
Offset: 0
Nathan K. McGregor (mcgregnk(AT)ese.wustl.edu), Sep 15 2006
- J. Munkres, Topology, Prentice Hall, (2000), p. 76.
-
a122835:=proc(n) option remember; if n=0 then 1 else 2^(n-1) - 1 + add(a122835(n-k)*binomial(n,k),k=1..n); fi; end;
-
a[n_]:=a[n]=2^(n-1)-1+Sum[a[n-k]*Binomial[n,k],{k,1,n}]; a[0]=1; Table[a[n],{n,0,25}]
a[ n_] := (3/4) * (PolyLog[ -n, 1/2] + Boole[n==0]) - 1/2 (* Michael Somos, Jan 07 2011 *)
-
{a(n) = local(A); if( n<1, n==0, A = exp(x + x * O(x^n)) / 2; n! * polcoeff( (3/4) / (1 - A) - A, n))} /* Michael Somos, Jan 07 2011 */
Showing 1-2 of 2 results.
Comments