A122841 Greatest k such that 6^k divides n.
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a122841 = f 0 where f y x = if r > 0 then y else f (y + 1) x' where (x', r) = divMod x 6 -- Reinhard Zumkeller, Nov 10 2013
-
Mathematica
Table[IntegerExponent[n, 6], {n, 1, 100}] (* Amiram Eldar, Sep 14 2020 *)
-
PARI
a(n) = valuation(n, 6); \\ Michel Marcus, Jan 17 2022
Formula
From Hieronymus Fischer, Jun 03 2012: (Start)
With m = floor(log_6(n)), frac(x) = x-floor(x):
a(n) = Sum_{j=1..m} (1 - ceiling(frac(n/6^j))).
a(n) = m + Sum_{j=1..m} (floor(-frac(n/6^j))).
G.f.: Sum_{j>0} x^6^j/(1-x^6^j). (End)
6^a(n) = A234959(n), n >= 1. - Wolfdieter Lang, Jun 30 2014
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1/5. - Amiram Eldar, Jan 17 2022
Comments