cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122854 Expansion of phi(q)^2*psi(q)^4 in powers of q where phi(),psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 8, 26, 48, 73, 120, 170, 208, 290, 360, 384, 528, 651, 656, 842, 960, 960, 1248, 1370, 1360, 1682, 1848, 1898, 2208, 2353, 2320, 2810, 3120, 2880, 3480, 3722, 3504, 4420, 4488, 4224, 5040, 5330, 5208, 5760, 6240, 5905, 6888, 7540, 6736, 7922, 8160, 7680
Offset: 0

Views

Author

Michael Somos, Sep 14 2006

Keywords

Comments

Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

Crossrefs

A050458(2n+1) = A050470(2n+1) = a(n).
Cf. A152584.

Programs

  • Mathematica
    a[n_]:= SeriesCoefficient[q^(-1/2)*(EllipticTheta[2, 0, q^(1/2)]^4 * EllipticTheta[3, 0, q]^2)/16, {q, 0, n}]; Table[A122854[n], {n, 0, 50}] (* G. C. Greubel, Jan 04 2018 *)
  • PARI
    {a(n)= local(A, p, e, f); if(n<0, 0, n=2*n+1; A=factor(n); prod(k=1, matsize(A)[1], if(p=A[k, 1], e=A[k, 2]; if(p==2, 0, f=(-1)^(p\2); (p^(2*e+2)-f^(e+1))/(p^2-f)))))}
    
  • PARI
    {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^2+A)^18/(eta(x+A)^8*eta(x^4+A)^4), n))}

Formula

Expansion of q^(-1/2)eta(q^2)^18/(eta(q)^8*eta(q^4)^4) in powers of q.
Euler transform of period 4 sequence [ 8, -10, 8, -6, ...].
a(n)=b(2n+1) where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = ((p^2)^(e+1)-1)/(p^2-1) if p == 1 (mod 4), b(p^e) = ((p^2)^(e+1)-(-1)^(e+1))/(p^2+1) if p == 3 (mod 4).
G.f.: Sum_{k>0 odd} k^2*x^k/(1+x^(2k)) = Product_{k>0} (1-x^(2k))^6*(1+x^k)^8/(1+x^(2k))^4.
Sum_{k=1..n} a(k) ~ c * n^3, where c = Pi^3/24 = 1.291928... (A152584). - Amiram Eldar, Dec 29 2023