cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A229616 Expansion of (phi(-q)^3 / phi(-q^3))^2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -12, 60, -156, 204, -72, -84, -96, 492, -588, 360, -144, 60, -168, 480, -936, 1068, -216, -516, -240, 1224, -1248, 720, -288, 348, -372, 840, -1884, 1632, -360, -504, -384, 2220, -1872, 1080, -576, -372, -456, 1200, -2184, 2952, -504, -672, -528, 2448
Offset: 0

Views

Author

Michael Somos, Sep 26 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - 12*q + 60*q^2 - 156*q^3 + 204*q^4 - 72*q^5 - 84*q^6 - 96*q^7 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(6), 2), 50); A[1] - 12*A[2] + 60*A[3];
  • Mathematica
    a[ n_] := If[n < 1, Boole[ n == 0], -12 Sum[ {1, -7, 10, -7, 1, 2}[[ Mod[d, 6, 1]]] n/d, {d, Divisors[n]}]];
    a[ n_] := If[n < 1, Boole[ n == 0], -12 Sum[ {1, -3, 4, -3, 1, 0}[[ Mod[d, 6, 1]]] d, {d, Divisors[n]}]];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q]^6 / EllipticTheta[ 4, 0, q^3]^2, {q, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, -12 * sumdiv( n, d, n/d * [2, 1, -7, 10, -7, 1][d%6 + 1]))};
    
  • PARI
    {a(n) = if( n<1, n==0, -12 * sumdiv( n, d, d * [0, 1, -3, 4, -3, 1][d%6 + 1]))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^6 * eta(x^6 + A) / (eta(x^2 + A)^3 * eta(x^3 + A)^2))^2, n))};
    
  • Sage
    A = ModularForms( Gamma0(6), 2, prec=50).basis(); A[0] - 12*A[1] + 60*A[2];
    

Formula

Expansion of (2*a(q^2) - a(q))^2 = b(q)^4 / b(q^2)^2 in powers of q where a(), b() are cubic AGM theta functions.
Expansion of (eta(q)^6 * eta(q^6) / (eta(q^2)^3 * eta(q^3)^2))^2 in powers of q.
Euler transform of period 6 sequence [-12, -6, -8, -6, -12, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = 432 (t / i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A229615.
G.f.: ( Product_{k>0} (1 + x^(3*k)) * (1 - x^k)^3 / ((1 + x^k)^3 * (1 - x^(3*k))))^2.
Convolution square of A122859.
Conjecture: -3 A122858(n) - A229616(n) + 4 A282031(n) = 0 for all n. - Thomas Baruchel, Jun 23 2018

A282031 Coefficients in q-expansion of (9*E_2(q^3)-E_2(q))/8.

Original entry on oeis.org

1, 3, 9, -15, 21, 18, -45, 24, 45, -69, 54, 36, -105, 42, 72, -90, 93, 54, -207, 60, 126, -120, 108, 72, -225, 93, 126, -231, 168, 90, -270, 96, 189, -180, 162, 144, -483, 114, 180, -210, 270, 126, -360, 132, 252, -414, 216, 144, -465, 171, 279, -270, 294, 162, -693, 216, 360, -300, 270, 180
Offset: 0

Views

Author

N. J. A. Sloane, Feb 19 2017

Keywords

Crossrefs

See A006352 for E_2.

Formula

Conjecture: -3 A122858(n) - A229616(n) + 4 A282031(n) = 0 for all n. - Thomas Baruchel, Jun 23 2018

A143336 Expansion of K(k) * (2 * E(k) - K(k)) / (Pi/2)^2 in powers of q where E(k), K(k) are complete elliptic integrals and q = exp(-Pi * K(k') / K(k)).

Original entry on oeis.org

1, -8, -8, -32, -40, -48, -32, -64, -104, -104, -48, -96, -160, -112, -64, -192, -232, -144, -104, -160, -240, -256, -96, -192, -416, -248, -112, -320, -320, -240, -192, -256, -488, -384, -144, -384, -520, -304, -160, -448, -624, -336, -256, -352, -480, -624, -192, -384, -928, -456, -248, -576, -560, -432
Offset: 0

Views

Author

Michael Somos, Aug 09 2008

Keywords

Examples

			G.f. = 1 - 8*q - 8*q^2 - 32*q^3 - 40*q^4 - 48*q^5 - 32*q^6 - 64*q^7 - 104*q^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], -(-1)^n 8 Sum[(-1)^d d, {d, Divisors @ n}]]; (* Michael Somos, Apr 07 2015 *)
    a[ n_] := SeriesCoefficient[ With[{m = InverseEllipticNomeQ[ q]}, EllipticK[ m] (2 EllipticE[ m] - EllipticK[ m]) (2/Pi)^2], {q, 0, n}]; (* Michael Somos, Apr 07 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, -(-1)^n * 8 * sumdiv(n, d, (-1)^d * d))};

Formula

The generating function equals 0 when 2 * E(k) = K(k) at q = 0.1076539192... (A072558) the "One-Ninth" constant.
Expansion of (P(q) - 2 * P(q^2) + 4 * P(q^4)) / 3 in powers of q where P() is a Ramanujan Lambert series.
G.f.: 1 - 8 * Sum_{k>0} k * x^k / (1 - (-x)^k) = 1 + 8 * Sum_{k>0} (-x)^k / (1 + (-x)^k)^2.
a(n) = (-1)^n * A122858(n). a(n) = -8 * A113184(n) unless n=0.
Showing 1-3 of 3 results.