A122866 Consider the array of sequences defined to be "the least previously nonoccurring positive integer such that partial sum + k is prime" beginning with k=0. This sequence is the main diagonal of that array.
2, 3, 6, 4, 12, 10, 16, 12, 16, 24, 26, 24, 30, 28, 28, 44, 36, 42, 20, 38, 34, 54, 54, 56, 48, 44, 50, 52, 68, 56, 56, 60, 62, 66, 66, 70, 76, 84, 76, 58, 92, 90, 88, 90, 80, 88, 92, 102, 104, 102, 114, 104, 108, 98, 114, 108, 92, 100, 120, 126, 124, 130, 126, 142, 116, 126
Offset: 0
Keywords
Examples
The array of sequences begins k= 0: 2, 1, 4, 6, 10, 8, 12, 16, 14, 24, 30, 22, 18, 26, 34, ...,. k= 1: 1, 3, 2, 4, 6, 12, 8, 10, 14, 18, 22, 26, 24, 16, 30, ...,. k= 2: 1, 2, 6, 8, 4, 14, 10, 12, 20, 18, 16, 24, 26, 28, 32, ...,. k= 3: 2, 6, 8, 4, 14, 10, 12, 20, 18, 16, 24, 26, 28, 32, 34, ...,. k= 4: 1, 2, 4, 6, 12, 8, 10, 14, 18, 22, 26, 24, 16, 30, 32, ...,. k= 5: 2, 4, 6, 12, 8, 10, 14, 18, 22, 26, 24, 16, 30, 32, 28, ...,.
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
f[s_] := Append[s, k = 1; p = q + Plus @@ s; While[MemberQ[s, k] || !PrimeQ[p + k], k++ ]; k]; T[n_, k_] := Nest[q = k; f, {}, n][[ -1]]; Table[T[n, n - 1], {n, 66}]
Extensions
Offset changed to 0 by Chai Wah Wu, Aug 27 2017