cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122870 Primes congruent to 3 or 7 mod 20.

Original entry on oeis.org

3, 7, 23, 43, 47, 67, 83, 103, 107, 127, 163, 167, 223, 227, 263, 283, 307, 347, 367, 383, 443, 463, 467, 487, 503, 523, 547, 563, 587, 607, 643, 647, 683, 727, 743, 787, 823, 827, 863, 883, 887, 907, 947, 967, 983, 1063, 1087, 1103, 1123, 1163, 1187, 1223
Offset: 1

Views

Author

Alexander Adamchuk, Sep 16 2006

Keywords

Comments

The old name was "Primes p that divide Lucas((p+1)/2) = A000032((p+1)/2)".
Note that F(p+1) = F((p+1)/2)*Lucas((p+1)/2), where F = A000045. Since gcd(F(n),Lucas(n)) = 1 or 2 (because Lucas(n)^2 - 5*F(n)^2 = 4*(-1)^n), this sequence (under the old definition above) lists primes p such that p divides F(p+1) but does not divides F((p+1)/2). By Propositions 1.1 and 1.2 (the k = 3 case) of my link below, this is primes p == 3, 7 (mod 20). - Jianing Song, Jun 20 2025

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989; see p. 33.

Crossrefs

Subseqeunce of A002145, A003631, A049098, A053027. Essentially the same as A106865.

Programs

  • Magma
    [p: p in PrimesUpTo(1500) | p mod 20 in [3, 7]]; // Vincenzo Librandi, Jan 06 2013
  • Mathematica
    Select[Prime[Range[1000]],IntegerQ[(Fibonacci[(#1+1)/2-1]+Fibonacci[(#1+1)/2+1])/#1]&]
    Select[Prime[Range[300]], MemberQ[{3, 7}, Mod[#, 20]]&] (* Vincenzo Librandi, Jan 06 2013 *)

Extensions

I merged A216816 into this entry at the suggestion of Jianing Song, Jun 20 2025. - N. J. A. Sloane, Jun 22 2025