A122870 Primes congruent to 3 or 7 mod 20.
3, 7, 23, 43, 47, 67, 83, 103, 107, 127, 163, 167, 223, 227, 263, 283, 307, 347, 367, 383, 443, 463, 467, 487, 503, 523, 547, 563, 587, 607, 643, 647, 683, 727, 743, 787, 823, 827, 863, 883, 887, 907, 947, 967, 983, 1063, 1087, 1103, 1123, 1163, 1187, 1223
Offset: 1
Keywords
References
- David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989; see p. 33.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Jianing Song, Lucas sequences and entry point modulo p
- Eric Weisstein's World of Mathematics, Lucas Number.
- Eric Weisstein's World of Mathematics, Gaussian Prime.
Crossrefs
Programs
-
Magma
[p: p in PrimesUpTo(1500) | p mod 20 in [3, 7]]; // Vincenzo Librandi, Jan 06 2013
-
Mathematica
Select[Prime[Range[1000]],IntegerQ[(Fibonacci[(#1+1)/2-1]+Fibonacci[(#1+1)/2+1])/#1]&] Select[Prime[Range[300]], MemberQ[{3, 7}, Mod[#, 20]]&] (* Vincenzo Librandi, Jan 06 2013 *)
Extensions
I merged A216816 into this entry at the suggestion of Jianing Song, Jun 20 2025. - N. J. A. Sloane, Jun 22 2025
Comments