cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122913 Minimum numbers k such that (k^2*2^n + 1) is prime.

Original entry on oeis.org

1, 1, 3, 1, 6, 2, 3, 1, 6, 5, 3, 4, 12, 2, 6, 1, 3, 10, 15, 5, 9, 5, 18, 25, 9, 13, 9, 14, 12, 7, 6, 9, 3, 17, 9, 9, 15, 12, 9, 6, 6, 3, 3, 11, 42, 18, 21, 9, 66, 10, 33, 5, 27, 7, 48, 80, 24, 40, 12, 20, 6, 10, 3, 5, 3, 7, 3, 79, 75, 63, 96, 40, 48, 20, 24, 10, 12, 5, 6, 15, 3, 22, 72, 11
Offset: 1

Views

Author

Alexander Adamchuk, Sep 18 2006

Keywords

Comments

3 divides a(2k+1) for k>0. Corresponding primes of the form (k^2*2^n + 1) are listed in A122912[n] = {3,5,73,17,1153,257,1153,257,18433,25601,18433,65537,1179649,65537,1179649,65537,1179649,26214401,117964801,...}. There are repeating patterns in a(n) such that for many n a(n) = 2*a(n+2) and a(n+1) = 2*a(n+3). For example, {6,2,3,1}, {12,2,6,1}, {42,18,21,9}, {96,40,48,20,24,10,12,5,6}, {66,10,33,5}, {48,80,24,40,12,20,6,10,3}, {366,38,183,19}. These patterns correspond to identical twin runs in A122912[n] such that A122912[n] = A122912[n+2] and A122912[n+1] = A122912[n+3]. The final index of many such twin runs is perfect power such as {8,16,25,64,81,100,...}.

Crossrefs

Cf. A112912.

Programs

  • Mathematica
    mnk[n_]:=Module[{k=1,c=2^n},While[!PrimeQ[k^2 c+1],k++];k]; Array[mnk,90] (* Harvey P. Dale, Jul 22 2025 *)

Formula

a(n) = Sqrt[ (A122912[n] - 1) / 2^n ].