cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A122918 Expansion of (1+x)^2/(1+x+x^2)^2.

Original entry on oeis.org

1, 0, -2, 2, 1, -4, 3, 2, -6, 4, 3, -8, 5, 4, -10, 6, 5, -12, 7, 6, -14, 8, 7, -16, 9, 8, -18, 10, 9, -20, 11, 10, -22, 12, 11, -24, 13, 12, -26, 14, 13, -28, 15, 14, -30, 16, 15, -32, 17, 16, -34, 18, 17, -36, 19, 18, -38
Offset: 0

Views

Author

Paul Barry, Sep 19 2006

Keywords

Comments

Row sums of Riordan array (1/(1+x+x^2), x/(1+x)^2), A122917.
For n>=1, a(n) equals (-1)^(n+1) times the second immanant of the n X n matrix with 1's along the main diagonal, superdiagonal, and subdiagonal, and 0's everywhere else. The second immanant of an n X n matrix A is the immanant of A given by the partition (2, 1^(n-2)). - John M. Campbell, Apr 12 2014

Crossrefs

Cf. A187430 (series reversion, with offset 1).

Programs

  • Mathematica
    CoefficientList[Series[(1 + x)^2/(1 + x + x^2)^2, {x, 0, 100}], x] (* Vincenzo Librandi, Apr 13 2014 *)
    Print[Table[(-1)^(n+1)*Sum[Binomial[n-i, i]*(n-2*i-1)*(-1)^i, {i, 0, Floor[n/2]}], {n, 0, 100}]] ;  (* John M. Campbell, Jan 08 2016 *)
  • PARI
    Vec((1+x)^2/(1+x+x^2)^2 + O(x^100)) \\ Altug Alkan, Jan 08 2015
    
  • PARI
    A122918(n)=(-1)^(n+1)*sum(i=0,n\2,(-1)^i*binomial(n-i,i)*(n-2*i-1)) \\ M. F. Hasler, Jan 12 2016

Formula

a(n) = 4 * sqrt(3) * cos(2*Pi*n/3 + Pi/6)/9 + 2(n+1) * sin(2*Pi*n/3 + Pi/6)/3. a(n) = sum{k=0..n} A057078(k) * A057078(n-k).
a(n) = (-1)^(n+1)*sum((-1)^i*binomial(n-i,i)*(n-2*i-1), i=0..[n/2]). - John M. Campbell, Jan 08 2016

A122919 Inverse of Riordan array (1/(1+x+x^2),x/(1+x)^2).

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 9, 10, 5, 1, 28, 34, 21, 7, 1, 90, 117, 83, 36, 9, 1, 297, 407, 319, 164, 55, 11, 1, 1001, 1430, 1209, 702, 285, 78, 13, 1, 3432, 5070, 4550, 2898, 1350, 454, 105, 15, 1, 11934, 18122, 17068, 11696, 6052
Offset: 0

Views

Author

Paul Barry, Sep 19 2006

Keywords

Comments

Row sums are A097613. Diagonal sums are A122920. Inverse of A122917.

Examples

			Triangle begins
1,
1, 1,
3, 3, 1,
9, 10, 5, 1,
28, 34, 21, 7, 1,
90, 117, 83, 36, 9, 1,
297, 407, 319, 164, 55, 11, 1,
1001, 1430, 1209, 702, 285, 78, 13, 1
		

Formula

Riordan array ((1-3x+2x^2-(1-x)sqrt(1-4x))/(2x^2),(1-2x-sqrt(1-4x))/(2x))
Showing 1-2 of 2 results.