cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A122920 Diagonal sums of number triangle A122919.

Original entry on oeis.org

1, 1, 4, 12, 39, 129, 436, 1498, 5218, 18386, 65420, 234734, 848403, 3086001, 11288412, 41499354, 153247278, 568188606, 2114334312, 7893906144, 29561195238, 111007927386, 417918303144, 1577061975492, 5964172347604, 22601012748124, 85806694043116, 326343785428946, 1243200250005995
Offset: 0

Views

Author

Paul Barry, Sep 19 2006

Keywords

Comments

Starting with offset 1 = iterates of M * [1,1,1,0,0,0,...] where M is the tridiagonal matrix with [0,2,2,2,...] as the main diagonal and [1,1,1,...] as the super and subdiagonals. - Gary W. Adamson, Jan 09 2009
Partial sums are Fine numbers (A000957) with offset 3. - Alexander Burstein, Apr 15 2015

Examples

			G.f. = 1 + x + 4*x^2 + 12*x^3 + 39*x^4 + 129*x^5 + 436*x^6 + 1498*x^7 + 5218*x^8 + ...
		

Crossrefs

Cf. A000957.

Programs

  • Mathematica
    CoefficientList[Series[((1-x)*(1-2*x-2*x^2-Sqrt[1-4*x])/(2*(2+x)*x^3)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 03 2014 *)
    Table[9/(16 (-2)^n) + 3 (2n+4)! HypergeometricPFQ[{1, n+5/2, n+3}, {n+2, n+5}, -8]/((n+1)! (n+4)!), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 26 2015 *)
  • PARI
    x='x+O('x^66); Vec(((1-x)*(1-2*x-2*x^2-sqrt(1-4*x))/(2*(2+x)*x^3))) \\ Joerg Arndt, May 08 2013

Formula

G.f.: ((1-x)*(1-2*x-2*x^2-sqrt(1-4*x))/(2*(2+x)*x^3)).
Conjecture: 2*n*(n+3)*a(n) - (7*n^2+9*n+4)*a(n-1) - 2*(n+1)*(2*n+1)*a(n-2) = 0. - R. J. Mathar, Nov 05 2012
a(n) ~ 2^(2*n+4) / (3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Feb 03 2014
From Vladimir Reshetnikov, Oct 26 2015: (Start)
a(n) = 9/(16*(-2)^n) + 3*(2*n+4)!*hypergeom([1,n+5/2,n+3], [n+2,n+5], -8)/((n+1)!*(n+4)!).
a(n) = 9/(16*(-2)^n) + 8*2^n*(2*n+5)!!*hypergeom([1,n+7/2], [n+5], -8)/(n+4)! - 4*2^n*(2*n+3)!!*hypergeom([1,n+5/2], [n+4], -8)/(n+3)!. (End)
G.f. A(x) =: y satisfies 0 = (1 - x)^2 - y*(1 - 3*x + 2*x^3) + y^2*(2*x^3 + x^4). - Michael Somos, Oct 26 2015
0 = a(n)*(+16*a(n+1) - 26*a(n+2) - 98*a(n+3) + 36*a(n+4)) + a(n+1)*(+50*a(n+1) + 35*a(n+2) - 179*a(n+3) + 46*a(n+4)) + a(n+2)*(+105*a(n+2) + 47*a(n+3) - 50*a(n+4)) + a(n+3)*(+14*a(n+3) + 4*a(n+4)) for all n>=0. - Michael Somos, Oct 26 2015

A122917 Riordan array (1/(1+x+x^2),x/(1+x)^2).

Original entry on oeis.org

1, -1, 1, 0, -3, 1, 1, 5, -5, 1, -1, -6, 14, -7, 1, 0, 6, -29, 27, -9, 1, 1, -6, 50, -76, 44, -11, 1, -1, 7, -77, 175, -155, 65, -13, 1, 0, -9, 111, -351, 441, -274, 90, -15, 1, 1, 11, -154, 638, -1078, 924, -441
Offset: 0

Views

Author

Paul Barry, Sep 19 2006

Keywords

Comments

Row sums are A122918. Inverse is A122919.

Examples

			Triangle begins
1,
-1, 1,
0, -3, 1,
1, 5, -5, 1,
-1, -6, 14, -7, 1,
0, 6, -29, 27, -9, 1,
1, -6, 50, -76, 44, -11, 1,
-1, 7, -77, 175, -155, 65, -13, 1
		

Crossrefs

Showing 1-2 of 2 results.