cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A104629 Expansion of (1-2*x-sqrt(1-4*x))/(x^2 * (1+2*x+sqrt(1-4*x))).

Original entry on oeis.org

1, 2, 6, 18, 57, 186, 622, 2120, 7338, 25724, 91144, 325878, 1174281, 4260282, 15548694, 57048048, 210295326, 778483932, 2892818244, 10786724388, 40347919626, 151355847012, 569274150156, 2146336125648, 8110508473252
Offset: 0

Views

Author

Paul Barry, Mar 17 2005

Keywords

Comments

Diagonal sums of A039598.

Crossrefs

Partial sums of A122920.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-2*x-Sqrt(1-4*x))/(x^2*(1+2*x+Sqrt(1-4*x))))); // G. C. Greubel, Aug 12 2018
    
  • Mathematica
    CoefficientList[Series[((1-2x-Sqrt[1-4x])/(1+2x+Sqrt[1-4x]))/x^2,{x,0,30}],x] (* Harvey P. Dale, Jul 23 2016 *)
    Table[(1 + Sum[CatalanNumber[n]*(-2)^k, {k,0,n+2}])/(8*(-2)^n), {n,0,30}] (* G. C. Greubel, Aug 12 2018 *)
  • PARI
    x='x+O('x^30); Vec((1-2*x-sqrt(1-4*x))/(x^2*(1+2*x+sqrt(1-4*x)))) \\ G. C. Greubel, Aug 12 2018
    
  • PARI
    for(n=0,30, print1((1 + sum(k=0,n+2, (-2)^k*binomial(2*k, k)/(k+1)))/(8*(-2)^n), ", ")) \\ G. C. Greubel, Aug 12 2018
    
  • Python
    from itertools import count, islice
    def A104629_gen(): # generator of terms
        a, c = 0, 1
        for n in count(1):
            yield (a:=(c:=c*((n<<2)+2)//(n+2))-a>>1)
    A104629_list = list(islice(A104629_gen(),20)) # Chai Wah Wu, Apr 26 2023

Formula

a(n) = A000957(n+3).
a(n) = (1 + Sum_{k=0..n+2} C(k)*(-2)^k)/(8*(-2)^n), where C(n) = Catalan numbers.
D-finite with recurrence: 2*(n+3)*a(n) +(-7*n-9)*a(n-1) +2*(-2*n-3)*a(n-2)=0. - R. J. Mathar, Oct 30 2014 [Verified by Georg Fischer, Apr 27 2023]

A122919 Inverse of Riordan array (1/(1+x+x^2),x/(1+x)^2).

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 9, 10, 5, 1, 28, 34, 21, 7, 1, 90, 117, 83, 36, 9, 1, 297, 407, 319, 164, 55, 11, 1, 1001, 1430, 1209, 702, 285, 78, 13, 1, 3432, 5070, 4550, 2898, 1350, 454, 105, 15, 1, 11934, 18122, 17068, 11696, 6052
Offset: 0

Views

Author

Paul Barry, Sep 19 2006

Keywords

Comments

Row sums are A097613. Diagonal sums are A122920. Inverse of A122917.

Examples

			Triangle begins
1,
1, 1,
3, 3, 1,
9, 10, 5, 1,
28, 34, 21, 7, 1,
90, 117, 83, 36, 9, 1,
297, 407, 319, 164, 55, 11, 1,
1001, 1430, 1209, 702, 285, 78, 13, 1
		

Formula

Riordan array ((1-3x+2x^2-(1-x)sqrt(1-4x))/(2x^2),(1-2x-sqrt(1-4x))/(2x))
Showing 1-2 of 2 results.