A122974 Triangle T(n,k), the number of permutations on n elements that have no cycles of length k.
0, 1, 1, 2, 3, 4, 9, 15, 16, 18, 44, 75, 80, 90, 96, 265, 435, 520, 540, 576, 600, 1854, 3045, 3640, 3780, 4032, 4200, 4320, 14833, 24465, 29120, 31500, 32256, 33600, 34560, 35280, 133496, 220185, 259840, 283500, 290304, 302400, 311040, 317520, 322560
Offset: 1
Examples
T(3,2)=3 since there are exactly 3 permutations of 1,2,3 that have no cycles of length 2, namely, (1)(2)(3),(1 2 3) and (2 1 3). Triangle T(n,k) begins: 0; 1, 1; 2, 3, 4; 9, 15, 16, 18; 44, 75, 80, 90, 96; 265, 435, 520, 540, 576, 600; 1854, 3045, 3640, 3780, 4032, 4200, 4320; 14833, 24465, 29120, 31500, 32256, 33600, 34560, 35280; ...
Links
- Alois P. Heinz, Rows for n = 1..141, flattened
- Dennis P. Walsh, The Number of Permutations with No k-Cycles.
Crossrefs
Programs
-
Maple
seq((round((2*n)^.5))!*sum((-1/(n-binomial(round((2*n)^.5),2)))^r/r!,r=0..floor(round((2*n)^.5)/(n-binomial(round((2*n)^.5),2)))),n=1..66); # second Maple program: T:= proc(n, k) option remember; `if`(n=0, 1, add(`if`(j=k, 0, T(n-j, k)*binomial(n-1, j-1)*(j-1)!), j=1..n)) end: seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Nov 24 2019
-
Mathematica
T[n_, k_] := T[n, k] = If[n==0, 1, Sum[If[j==k, 0, T[n - j, k] Binomial[n - 1, j - 1] (j - 1)!], {j, 1, n}]]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Dec 08 2019, after Alois P. Heinz *)
Formula
T(n,k)=n!*sum r=0..floor(n/k)((-1/k)^r/r!) E.G.F: exp(-x^k/k)/(1-x) a(n)=(round((2*n)^.5))!*sum((-1/(n-binomial(round((2*n)^.5),2)))^r/r!,r=0..floor(round((2*n)^.5)/(n-binomial(round((2*n)^.5),2)))).
T(n,k) = n! - A293211(n,k). - Alois P. Heinz, Nov 24 2019
Comments