A293211
Triangle T(n,k) is the number of permutations on n elements with at least one k-cycle for 1 <= k <= n.
Original entry on oeis.org
1, 1, 1, 4, 3, 2, 15, 9, 8, 6, 76, 45, 40, 30, 24, 455, 285, 200, 180, 144, 120, 3186, 1995, 1400, 1260, 1008, 840, 720, 25487, 15855, 11200, 8820, 8064, 6720, 5760, 5040, 229384, 142695, 103040, 79380, 72576, 60480, 51840, 45360, 40320, 2293839, 1427895, 1030400, 793800, 653184, 604800, 518400, 453600, 403200, 362880
Offset: 1
T(n,k) (the first 8 rows):
: 1;
: 1, 1;
: 4, 3, 2;
: 15, 9, 8, 6;
: 76, 45, 40, 30, 24;
: 455, 285, 200, 180, 144, 120;
: 3186, 1995, 1400, 1260, 1008, 840, 720;
: 25487, 15855, 11200, 8820, 8064, 6720, 5760, 5040;
...
T(4,3)=8 since there are exactly 8 permutations on {1,2,3,4} with at least one 3-cycle: (1)(234), (1)(243), (2)(134), (2)(143), (3)(124), (3)(142), (4)(123), and (4)(132).
-
T:=(n,k)->n!*sum((-1)^(j+1)*(1/k)^j/j!,j=1..floor(n/k)); seq(seq(T(n,k),k=1..n),n=1..10);
-
Table[n!*Sum[(-1)^(j + 1)*(1/k)^j/j!, {j, Floor[n/k]}], {n, 10}, {k, n}] // Flatten (* Michael De Vlieger, Oct 02 2017 *)
A094304
Sum of all possible sums formed from all but one of the previous terms, starting 1.
Original entry on oeis.org
1, 0, 1, 4, 18, 96, 600, 4320, 35280, 322560, 3265920, 36288000, 439084800, 5748019200, 80951270400, 1220496076800, 19615115520000, 334764638208000, 6046686277632000, 115242726703104000, 2311256907767808000, 48658040163532800000, 1072909785605898240000
Offset: 1
a(2) = 0 as there is only one previous term and empty sum is taken to be 0.
a(4) = (a(1) +a(2))+ (a(1) +a(3)) + (a(2) +a(3)) = (1+0) +(1+1) +(0+1) = 4.
a(5) = (a(1)+a(2)+a(3)) +(a(1)+a(2)+ a(4)) +(a(1)+a(3)+a(4)) +(a(2)+a(3)+a(4)) = (1+0+1) +(1+0+4) +(1+1+4) +(0+1+4) = 2 + 5 + 6 + 5 = 18.
-
a := n -> (n-2)*(n-2)!: 1,seq(a(n), n=2..23); # Emeric Deutsch, May 01 2008
-
In[2]:= l = {1}; Do[k = Length[l] - 1; p = Plus @@ Flatten[Select[Subsets[l], Length[ # ]==k& ]]; AppendTo[l, p], {n, 20}]; l (* Ryan Propper, May 28 2006 *)
-
v=vector(30);v[1]=1;v[2]=0;for(n=3,#v,s=0;for(i=1,2^(n-1)-1, vb=binary(i); if(hammingweight(vb)==n-2,s=s+sum(j=1,#vb, if(vb[j], v[n-#vb+j-1]))));v[n]=s;print1(s,",")) /* Ralf Stephan, Sep 22 2013 */
A378495
Triangle read by rows: T(n,k) is the number of derangements in S_n with no k-cycles. 1 <= k <= n.
Original entry on oeis.org
0, 0, 0, 0, 2, 0, 0, 6, 9, 3, 0, 24, 24, 44, 20, 0, 160, 225, 175, 265, 145, 0, 1140, 1224, 1434, 1350, 1854, 1134, 0, 8988, 11025, 12313, 12145, 11473, 14833, 9793, 0, 80864, 93456, 100232, 106280, 113336, 107576, 133496, 93176, 0, 809856, 965601, 1057761, 1141425, 1108161, 1162161, 1108161, 1334961, 972081
Offset: 1
Triangle begins:
| 1 2 3 4 5 6 7 8 9
---+---------------------------------------------------------------
1 | 0
2 | 0, 0
3 | 0, 2, 0
4 | 0, 6, 9, 3
5 | 0, 24, 24, 44, 20
6 | 0, 160, 225, 175, 265, 145
7 | 0, 1140, 1224, 1434, 1350, 1854, 1134
8 | 0, 8988, 11025, 12313, 12145, 11473, 14833, 9793
9 | 0, 80864, 93456, 100232, 106280, 113336, 107576, 133496, 93176
Showing 1-3 of 3 results.
Comments