A094258
a(1) = 1, a(n+1) = n*n! for n >= 1.
Original entry on oeis.org
1, 1, 4, 18, 96, 600, 4320, 35280, 322560, 3265920, 36288000, 439084800, 5748019200, 80951270400, 1220496076800, 19615115520000, 334764638208000, 6046686277632000, 115242726703104000, 2311256907767808000, 48658040163532800000, 1072909785605898240000, 24728016011107368960000, 594596384994354462720000
Offset: 1
a(1) = 1;
a(2) = 1*a(1) = 1;
...
a(7) = 6*(a(1) + a(2) + ... + a(6)) = 6*(1 + 1 + 4 + 18 + 96 + 600) = 4320.
- Harvey P. Dale, Table of n, a(n) for n = 1..400
- Jonathan Beagley and Lara Pudwell, Colorful Tilings and Permutations, Journal of Integer Sequences, Vol. 24 (2021), Article 21.10.4.
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly 113 (2006) 637-641.
- J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, arXiv:0704.1282 [math.HO], 2007-2010.
Up to the offset and initial value, the same as
A001563, cf. formula.
-
A094258 := proc(n) option remember: if n = 1 then 1; else (n-1)*add(A094258(i),i=1..n-1) ; fi ; end: seq(A094258(n),n=1..24) ; # R. J. Mathar, Jul 27 2007
-
a=s=1;lst={a};Do[a=s*n-s;s+=a;AppendTo[lst,a],{n,2,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jun 27 2009 *)
Module[{lst={1}},Do[AppendTo[lst,n*Total[lst]],{n,30}];lst] (* Harvey P. Dale, Jul 01 2012 *)
-
A094258(n)=(n-1)!*(n-(n>1)) \\ M. F. Hasler, Oct 21 2012
Edited by Mark Hudson, Jan 05 2005
A122974
Triangle T(n,k), the number of permutations on n elements that have no cycles of length k.
Original entry on oeis.org
0, 1, 1, 2, 3, 4, 9, 15, 16, 18, 44, 75, 80, 90, 96, 265, 435, 520, 540, 576, 600, 1854, 3045, 3640, 3780, 4032, 4200, 4320, 14833, 24465, 29120, 31500, 32256, 33600, 34560, 35280, 133496, 220185, 259840, 283500, 290304, 302400, 311040, 317520, 322560
Offset: 1
T(3,2)=3 since there are exactly 3 permutations of 1,2,3 that have no cycles of length 2, namely, (1)(2)(3),(1 2 3) and (2 1 3).
Triangle T(n,k) begins:
0;
1, 1;
2, 3, 4;
9, 15, 16, 18;
44, 75, 80, 90, 96;
265, 435, 520, 540, 576, 600;
1854, 3045, 3640, 3780, 4032, 4200, 4320;
14833, 24465, 29120, 31500, 32256, 33600, 34560, 35280;
...
-
seq((round((2*n)^.5))!*sum((-1/(n-binomial(round((2*n)^.5),2)))^r/r!,r=0..floor(round((2*n)^.5)/(n-binomial(round((2*n)^.5),2)))),n=1..66);
# second Maple program:
T:= proc(n, k) option remember; `if`(n=0, 1, add(`if`(j=k, 0,
T(n-j, k)*binomial(n-1, j-1)*(j-1)!), j=1..n))
end:
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Nov 24 2019
-
T[n_, k_] := T[n, k] = If[n==0, 1, Sum[If[j==k, 0, T[n - j, k] Binomial[n - 1, j - 1] (j - 1)!], {j, 1, n}]];
Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Dec 08 2019, after Alois P. Heinz *)
A177263
Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k as the last entry in the first block (1<=k<=n).
Original entry on oeis.org
1, 0, 2, 1, 1, 4, 4, 5, 5, 10, 18, 22, 23, 23, 34, 96, 114, 118, 119, 119, 154, 600, 696, 714, 718, 719, 719, 874, 4320, 4920, 5016, 5034, 5038, 5039, 5039, 5914, 35280, 39600, 40200, 40296, 40314, 40318, 40319, 40319, 46234, 322560, 357840, 362160, 362760, 362856, 362874, 362878, 362879, 362879, 409114
Offset: 1
T(4,2)=5 because we have 12-4-3, 2-1-34, 2-1-4-3, 2-4-1-3, and 2-4-3-1 (the blocks are separated by dashes).
Triangle starts:
1;
0, 2;
1, 1, 4;
4, 5, 5, 10;
18, 22, 23, 23, 34;
96, 114, 118, 119, 119, 154;
600, 696, 714, 718, 719, 719, 874;
4320, 4920, 5016, 5034, 5038, 5039, 5039, 5914;
-
A003422:= func< n | (&+[Factorial(j): j in [0..n-1]]) >;
A177263:= func< n,k | k eq n select A003422(n) else Factorial(n-1) - Factorial(n-k-1) >;
[A177263(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, May 19 2024
-
T := proc (n, k) if k <= n-1 then factorial(n-1)-factorial(n-k-1) elif k = n then sum(factorial(j), j = 0 .. n-1) else 0 end if end proc: for n to 10 do seq(T(n, k), k = 1 .. n) end do; # yields sequence in triangular form
-
A003422[n_]:= Sum[j!, {j,0,n-1}];
T[n_, k_]:= If[k==n, A003422[n], (n-1)! -(n-k-1)!];
Table[T[n,k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, May 19 2024 *)
-
def A003422(n): return sum(factorial(j) for j in range(n))
def A177263(n,k): return A003422(n) if k==n else factorial(n-1) - factorial(n-k-1)
flatten([[A177263(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, May 19 2024
Showing 1-3 of 3 results.
Comments