cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A001563 a(n) = n*n! = (n+1)! - n!.

Original entry on oeis.org

0, 1, 4, 18, 96, 600, 4320, 35280, 322560, 3265920, 36288000, 439084800, 5748019200, 80951270400, 1220496076800, 19615115520000, 334764638208000, 6046686277632000, 115242726703104000, 2311256907767808000, 48658040163532800000, 1072909785605898240000
Offset: 0

Views

Author

Keywords

Comments

A similar sequence, with the initial 0 replaced by 1, namely A094258, is defined by the recurrence a(2) = 1, a(n) = a(n-1)*(n-1)^2/(n-2). - Andrey Ryshevich (ryshevich(AT)notes.idlab.net), May 21 2002
Denominators in power series expansion of E_1(x) + gamma + log(x), x > 0. - Michael Somos, Dec 11 2002
If all the permutations of any length k are arranged in lexicographic order, the n-th term in this sequence (n <= k) gives the index of the permutation that rotates the last n elements one position to the right. E.g., there are 24 permutations of 4 items. In lexicographic order they are (0,1,2,3), (0,1,3,2), (0,2,1,3), ... (3,2,0,1), (3,2,1,0). Permutation 0 is (0,1,2,3), which rotates the last 1 element, i.e., it makes no change. Permutation 1 is (0,1,3,2), which rotates the last 2 elements. Permutation 4 is (0,3,1,2), which rotates the last 3 elements. Permutation 18 is (3,0,1,2), which rotates the last 4 elements. The same numbers work for permutations of any length. - Henry H. Rich (glasss(AT)bellsouth.net), Sep 27 2003
Stirling transform of a(n+1)=[4,18,96,600,...] is A083140(n+1)=[4,22,154,...]. - Michael Somos, Mar 04 2004
From Michael Somos, Apr 27 2012: (Start)
Stirling transform of a(n)=[1,4,18,96,...] is A069321(n)=[1,5,31,233,...].
Partial sums of a(n)=[0,1,4,18,...] is A033312(n+1)=[0,1,5,23,...].
Binomial transform of A000166(n+1)=[0,1,2,9,...] is a(n)=[0,1,4,18,...].
Binomial transform of A000255(n+1)=[1,3,11,53,...] is a(n+1)=[1,4,18,96,...].
Binomial transform of a(n)=[0,1,4,18,...] is A093964(n)=[0,1,6,33,...].
Partial sums of A001564(n)=[1,3,4,14,...] is a(n+1)=[1,4,18,96,...].
(End)
Number of small descents in all permutations of [n+1]. A small descent in a permutation (x_1,x_2,...,x_n) is a position i such that x_i - x_(i+1) =1. Example: a(2)=4 because there are 4 small descents in the permutations 123, 13\2, 2\13, 231, 312, 3\2\1 of {1,2,3} (shown by \). a(n)=Sum_{k=0..n-1}k*A123513(n,k). - Emeric Deutsch, Oct 02 2006
Equivalently, in the notation of David, Kendall and Barton, p. 263, this is the total number of consecutive ascending pairs in all permutations on n+1 letters (cf. A010027). - N. J. A. Sloane, Apr 12 2014
a(n-1) is the number of permutations of n in which n is not fixed; equivalently, the number of permutations of the positive integers in which n is the largest element that is not fixed. - Franklin T. Adams-Watters, Nov 29 2006
Number of factors in a determinant when writing down all multiplication permutations. - Mats Granvik, Sep 12 2008
a(n) is also the sum of the positions of the left-to-right maxima in all permutations of [n]. Example: a(3)=18 because the positions of the left-to-right maxima in the permutations 123,132,213,231,312 and 321 of [3] are 123, 12, 13, 12, 1 and 1, respectively and 1+2+3+1+2+1+3+1+2+1+1=18. - Emeric Deutsch, Sep 21 2008
Equals eigensequence of triangle A002024 ("n appears n times"). - Gary W. Adamson, Dec 29 2008
Preface the series with another 1: (1, 1, 4, 18, ...); then the next term = dot product of the latter with "n occurs n times". Example: 96 = (1, 1, 4, 8) dot (4, 4, 4, 4) = (4 + 4 + 16 + 72). - Gary W. Adamson, Apr 17 2009
Row lengths of the triangle in A030298. - Reinhard Zumkeller, Mar 29 2012
a(n) is also the number of minimum (n-)distinguishing labelings of the star graph S_{n+1} on n+1 nodes. - Eric W. Weisstein, Oct 14 2014
When the numbers denote finite permutations (as row numbers of A055089) these are the circular shifts to the right, i.e., a(n) is the permutation with the cycle notation (0 1 ... n-1 n). Compare array A051683 for circular shifts to the right in a broader sense. Compare sequence A007489 for circular shifts to the left. - Tilman Piesk, Apr 29 2017
a(n-1) is the number of permutations on n elements with no cycles of length n. - Dennis P. Walsh, Oct 02 2017
The number of pandigital numbers in base n+1, such that each digit appears exactly once. For example, there are a(9) = 9*9! = 3265920 pandigital numbers in base 10 (A050278). - Amiram Eldar, Apr 13 2020

Examples

			E_1(x) + gamma + log(x) = x/1 - x^2/4 + x^3/18 - x^4/96 + ..., x > 0. - _Michael Somos_, Dec 11 2002
G.f. = x + 4*x^2 + 18*x^3 + 96*x^4 + 600*x^5 + 4320*x^6 + 35280*x^7 + 322560*x^8 + ...
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 218.
  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 336.
  • F. N. David, M. G. Kendall, and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 37, equation 37:6:1 at page 354.

Crossrefs

Cf. A163931 (E(x,m,n)), A002775 (n^2*n!), A091363 (n^3*n!), A091364 (n^4*n!).
Cf. sequences with formula (n + k)*n! listed in A282466.
Row sums of A185105, A322383, A322384, A094485.

Programs

  • GAP
    List([0..20], n-> n*Factorial(n) ); # G. C. Greubel, Dec 30 2019
  • Haskell
    a001563 n = a001563_list !! n
    a001563_list = zipWith (-) (tail a000142_list) a000142_list
    -- Reinhard Zumkeller, Aug 05 2013
    
  • Magma
    [Factorial(n+1)-Factorial(n): n in [0..20]]; // Vincenzo Librandi, Aug 08 2014
    
  • Maple
    A001563 := n->n*n!;
  • Mathematica
    Table[n!n,{n,0,25}] (* Harvey P. Dale, Oct 03 2011 *)
  • PARI
    {a(n) = if( n<0, 0, n * n!)} /* Michael Somos, Dec 11 2002 */
    
  • Sage
    [n*factorial(n) for n in (0..20)] # G. C. Greubel, Dec 30 2019
    

Formula

From Michael Somos, Dec 11 2002: (Start)
E.g.f.: x / (1 - x)^2.
a(n) = -A021009(n, 1), n >= 0. (End)
The coefficient of y^(n-1) in expansion of (y+n!)^n, n >= 1, gives the sequence 1, 4, 18, 96, 600, 4320, 35280, ... - Artur Jasinski, Oct 22 2007
Integral representation as n-th moment of a function on a positive half-axis: a(n) = Integral_{x=0..oo} x^n*(x*(x-1)*exp(-x)) dx, for n>=0. This representation may not be unique. - Karol A. Penson, Sep 27 2001
a(0)=0, a(n) = n*a(n-1) + n!. - Benoit Cloitre, Feb 16 2003
a(0) = 0, a(n) = (n - 1) * (1 + Sum_{i=1..n-1} a(i)) for i > 0. - Gerald McGarvey, Jun 11 2004
Arises in the denominators of the following identities: Sum_{n>=1} 1/(n*(n+1)*(n+2)) = 1/4, Sum_{n>=1} 1/(n*(n+1)*(n+2)*(n+3)) = 1/18, Sum_{n>=1} 1/(n*(n+1)*(n+2)*(n+3)*(n+4)) = 1/96, etc. The general expression is Sum_{n>=k} 1/C(n, k) = k/(k-1). - Dick Boland, Jun 06 2005 [And the general expression implies that Sum_{n>=1} 1/(n*(n+1)*...*(n+k-1)) = (Sum_{n>=k} 1/C(n, k))/k! = 1/((k-1)*(k-1)!) = 1/a(k-1), k >= 2. - Jianing Song, May 07 2023]
a(n) = Sum_{m=2..n+1} |Stirling1(n+1, m)|, n >= 1 and a(0):=0, where Stirling1(n, m) = A048994(n, m), n >= m = 0.
a(n) = 1/(Sum_{k>=0} k!/(n+k+1)!), n > 0. - Vladeta Jovovic, Sep 13 2006
a(n) = Sum_{k=1..n(n+1)/2} k*A143946(n,k). - Emeric Deutsch, Sep 21 2008
The reciprocals of a(n) are the lead coefficients in the factored form of the polynomials obtained by summing the binomial coefficients with a fixed lower term up to n as the upper term, divided by the term index, for n >= 1: Sum_{k = i..n} C(k, i)/k = (1/a(n))*n*(n-1)*..*(n-i+1). The first few such polynomials are Sum_{k = 1..n} C(k, 1)/k = (1/1)*n, Sum_{k = 2..n} C(k, 2)/k = (1/4)*n*(n-1), Sum_{k = 3..n} C(k, 3)/k = (1/18)*n*(n-1)*(n-2), Sum_{k = 4..n} C(k, 4)/k = (1/96)*n*(n-1)*(n-2)*(n-3), etc. - Peter Breznay (breznayp(AT)uwgb.edu), Sep 28 2008
If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j)*Stirling1(n,k)* Stirling2(j,i)*x^(k-j) then a(n) = (-1)^(n-1)*f(n,1,-2), (n >= 1). - Milan Janjic, Mar 01 2009
Sum_{n>=1} (-1)^(n+1)/a(n) = 0.796599599... [Jolley eq. 289]
G.f.: 2*x*Q(0), where Q(k) = 1 - 1/(k+2 - x*(k+2)^2*(k+3)/(x*(k+2)*(k+3)-1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 19 2013
G.f.: W(0)*(1-sqrt(x)) - 1, where W(k) = 1 + sqrt(x)/( 1 - sqrt(x)*(k+2)/(sqrt(x)*(k+2) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 18 2013
G.f.: T(0)/x - 1/x, where T(k) = 1 - x^2*(k+1)^2/( x^2*(k+1)^2 - (1-x-2*x*k)*(1-3*x-2*x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 17 2013
G.f.: Q(0)*(1-x)/x - 1/x, where Q(k) = 1 - x*(k+1)/( x*(k+1) - 1/(1 - x*(k+1)/( x*(k+1) - 1/Q(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Oct 22 2013
D-finite with recurrence: a(n) +(-n-2)*a(n-1) +(n-1)*a(n-2)=0. - R. J. Mathar, Jan 14 2020
a(n) = (-1)^(n+1)*(n+1)*Sum_{k=1..n} A094485(n,k)*Bernoulli(k). The inverse of the Worpitzky representation of the Bernoulli numbers. - Peter Luschny, May 28 2020
From Amiram Eldar, Aug 04 2020: (Start)
Sum_{n>=1} 1/a(n) = Ei(1) - gamma = A229837.
Sum_{n>=1} (-1)^(n+1)/a(n) = gamma - Ei(-1) = A239069. (End)
a(n) = Gamma(n)*A000290(n) for n > 0. - Jacob Szlachetka, Jan 01 2022

A094304 Sum of all possible sums formed from all but one of the previous terms, starting 1.

Original entry on oeis.org

1, 0, 1, 4, 18, 96, 600, 4320, 35280, 322560, 3265920, 36288000, 439084800, 5748019200, 80951270400, 1220496076800, 19615115520000, 334764638208000, 6046686277632000, 115242726703104000, 2311256907767808000, 48658040163532800000, 1072909785605898240000
Offset: 1

Views

Author

Amarnath Murthy, Apr 29 2004

Keywords

Comments

Apart from initial 1, same sequence as A001563. Additive analog of A057438.
a(1) = 1, for n >= 2: a(n) = sum of previous terms * (n-2) = (Sum_(i=1...n-2) a(i)) * (n-2). a(n) = A001563(n-2) = A094258(n-1) for n >= 3. - Jaroslav Krizek, Oct 16 2009

Examples

			a(2) = 0 as there is only one previous term and empty sum is taken to be 0.
a(4) = (a(1) +a(2))+ (a(1) +a(3)) + (a(2) +a(3)) = (1+0) +(1+1) +(0+1) = 4.
a(5) = (a(1)+a(2)+a(3)) +(a(1)+a(2)+ a(4)) +(a(1)+a(3)+a(4)) +(a(2)+a(3)+a(4)) = (1+0+1) +(1+0+4) +(1+1+4) +(0+1+4) = 2 + 5 + 6 + 5 = 18.
		

Crossrefs

Programs

  • Maple
    a := n -> (n-2)*(n-2)!: 1,seq(a(n), n=2..23); # Emeric Deutsch, May 01 2008
  • Mathematica
    In[2]:= l = {1}; Do[k = Length[l] - 1; p = Plus @@ Flatten[Select[Subsets[l], Length[ # ]==k& ]]; AppendTo[l, p], {n, 20}]; l (* Ryan Propper, May 28 2006 *)
  • PARI
    v=vector(30);v[1]=1;v[2]=0;for(n=3,#v,s=0;for(i=1,2^(n-1)-1, vb=binary(i); if(hammingweight(vb)==n-2,s=s+sum(j=1,#vb, if(vb[j], v[n-#vb+j-1]))));v[n]=s;print1(s,",")) /* Ralf Stephan, Sep 22 2013 */

Formula

a(n) = (n-2)!(n-2) for n>=2. - Emeric Deutsch, May 01 2008
G.f.: x*T(0), where T(k) = 1 - x^2*(k+1)^2/(x^2*(k+1)^2 - (1 -x -2*x*k)*(1 -3*x -2*x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 10 2013
a(n) = S1(n,1) - S1(n-1,1), where S1 are the unsigned Stirling cycle numbers. - Peter Luschny, Apr 10 2016
a(n) = A122974(n-1,n-1). - Alois P. Heinz, Nov 24 2019

Extensions

Edited by N. J. A. Sloane, May 29 2006

A188914 a(n) = n*n! + 1 = (n+1)! - n! + 1.

Original entry on oeis.org

1, 2, 5, 19, 97, 601, 4321, 35281, 322561, 3265921, 36288001, 439084801, 5748019201, 80951270401, 1220496076801, 19615115520001, 334764638208001, 6046686277632001, 115242726703104001, 2311256907767808001, 48658040163532800001, 1072909785605898240001
Offset: 0

Views

Author

John M. Campbell, Apr 17 2011

Keywords

Comments

It is unknown if all numbers of the form n*n!+1 are squarefree. n*n!+1 is squarefree for 0 < n < 52. It is unknown if there exist infinitely many primes of the form n*n!+1. For primes in this sequence, see A049984.

Crossrefs

Programs

  • Mathematica
    Table[(n*Factorial[n])+1,{n,0,30}]
  • PARI
    a(n) = n*n! + 1; \\ Michel Marcus, Aug 03 2022

Formula

E.g.f.: exp(x) + x/(1 - x)^2. - Stefano Spezia, Aug 03 2022

Extensions

a(0)=1 prepended by Alois P. Heinz, Aug 03 2022

A230339 Numerator of Sum_{k=1..n} 1/(k(k+1)(k+2)(k+3)) = Sum_{k=1..n} 1/Pochhammer(k,4).

Original entry on oeis.org

0, 1, 1, 19, 17, 55, 83, 119, 82, 73, 95, 121, 227, 559, 679, 815, 484, 1139, 443, 171, 295, 2023, 2299, 2599, 1462, 3275, 3653, 451, 749, 551, 5455, 5983, 3272, 7139, 7769, 8435, 1523, 3293, 3553, 11479, 6170, 13243, 14189, 15179, 8107, 5765
Offset: 0

Views

Author

Jean-François Alcover, Oct 16 2013

Keywords

Examples

			1/(1*2*3*4) + 1/(2*3*4*5) + 1/(3*4*5*6) = 19/360, so a(3) = 19.
The rationals r(n) = a(n)/A230340(n) begin: 0, 1/24, 1/20, 19/360, 17/315, 55/1008, 83/1512, 119/2160, 82/1485, 73/1320, 95/1716, 121/2184, 227/4095, 559/10080, 679/12240, 815/14688, ... - _Wolfdieter Lang_, Mar 08 2018
		

References

  • L. B. W. Jolley, Summation of Series, Second revised ed., Dover, 1961, p.38, (202) and (201).

Crossrefs

Cf. A001563, A052762, A094258, A125650, A230328, A230340 (denominators).

Programs

  • Mathematica
    a[n_] := Numerator[1/18 - 1/(3*(n+1)*(n+2)*(n+3))]; Table[a[n], {n, 0, 100}]
  • PARI
    a(n) = numerator(1/18 - 1/(3*(n+1)*(n+2)*(n+3))) \\ Colin Barker, Jul 30 2019

Formula

Numerator(1/18 - 1/(3*(n+1)*(n+2)*(n+3))) (from the generic formula Sum_{k=1..n} 1/Pochhammer(k, m) = 1/((m-1)*(m-1)!) - 1/((m-1)*Pochhammer(n+1, m-1)) with m = 4).
G.f. for the rationals r(n) = (1/18)*n*(11+n^2+6*n)/((1+n)*(n+2)*(n+3)) = a(n)/A230340(n): (1/18)*(1 - hypergeometric([1, 3], [4], -x/(1-x)))/(1-x) = (6*x - 15*x^2 + 11*x^3 + 6*(1 - 3*x + 3*x^2 - x^3)*log(1-x))/(36*x^3*(1-x)). - Wolfdieter Lang, Mar 08 2018
a(n) = numerator(1/18 - 1/(3*(n+1)*(n+2)*(n+3))). - Colin Barker, Jul 30 2019

A230340 Denominator of Sum_{k=1..n} 1/(k(k+1)(k+2)(k+3)) = Sum_{k=1..n} 1/Pochhammer(k,4).

Original entry on oeis.org

1, 24, 20, 360, 315, 1008, 1512, 2160, 1485, 1320, 1716, 2184, 4095, 10080, 12240, 14688, 8721, 20520, 7980, 3080, 5313, 36432, 41400, 46800, 26325, 58968, 65772, 8120, 13485, 9920, 98208, 107712, 58905, 128520, 139860, 151848, 27417, 59280
Offset: 0

Views

Author

Jean-François Alcover, Oct 16 2013

Keywords

Examples

			1/(1*2*3*4) + 1/(2*3*4*5) + 1/(3*4*5*6) = 19/360, so a(3) = 360.
		

Crossrefs

Cf. A001563, A052762, A094258, A125650, A230328, A230339 (numerators).

Programs

  • Magma
    [Denominator(1/18 - 1/(3*(n+1)*(n+2)*(n+3))):n in [0..100]]; // Marius A. Burtea, Jul 30 2019
  • Mathematica
    a[n_] := Denominator[1/18 - 1/(3*(n+1)*(n+2)*(n+3))]; Table[a[n], {n, 0, 100}]
  • PARI
    a(n) = denominator(1/18 - 1/(3*(n+1)*(n+2)*(n+3))) \\ Colin Barker, Jul 30 2019
    

Formula

Denominator(1/18 - 1/(3*(n+1)*(n+2)*(n+3))).

A280318 a(n) is the n-th permutation generated by Heap's algorithm, represented by row number of A055089.

Original entry on oeis.org

0, 1, 3, 2, 4, 5, 11, 10, 8, 9, 7, 6, 12, 13, 15, 14, 16, 17, 23, 22, 20, 21, 19, 18, 93, 92, 94, 95, 90, 91, 78, 79, 81, 80, 82, 83, 89, 88, 86, 87, 85, 84, 74, 75, 73, 72, 77, 76, 52, 53, 48, 49, 51, 50, 71, 70, 68, 69, 67, 66, 55, 54, 59, 58
Offset: 0

Views

Author

Tilman Piesk, Dec 31 2016

Keywords

Comments

This is a permutation of the nonnegative integers. It divides naturally in sections of factorial length, so it can be seen as a triangle with row lengths A094258:
0,
1,
3, 2, 4, 5,
11, 10, 8, 9, 7, 6, 12, 13, 15, 14, 16, 17, 23, 22, 20, 21, 19, 18...
Compare A280319 for Steinhaus-Johnson-Trotter algorithm, which is a triangle of finite permutations rather than one infinite permutation.

Examples

			Example for the first 24 entries of the sequence. On the right are the permutations of {1,2,3,4} in the order generated by the Heap's algorithm:
   n    rev colex        a(n)   Heap's
   0     1 2 3 4          0     1 2 3 4
   1     2 1 3 4          1     2 1 3 4
   2     1 3 2 4          3     3 1 2 4
   3     3 1 2 4          2     1 3 2 4
   4     2 3 1 4          4     2 3 1 4
   5     3 2 1 4          5     3 2 1 4
   6     1 2 4 3         11     4 2 1 3
   7     2 1 4 3         10     2 4 1 3
   8     1 4 2 3          8     1 4 2 3
   9     4 1 2 3          9     4 1 2 3
  10     2 4 1 3          7     2 1 4 3
  11     4 2 1 3          6     1 2 4 3
  12     1 3 4 2         12     1 3 4 2
  13     3 1 4 2         13     3 1 4 2
  14     1 4 3 2         15     4 1 3 2
  15     4 1 3 2         14     1 4 3 2
  16     3 4 1 2         16     3 4 1 2
  17     4 3 1 2         17     4 3 1 2
  18     2 3 4 1         23     4 3 2 1
  19     3 2 4 1         22     3 4 2 1
  20     2 4 3 1         20     2 4 3 1
  21     4 2 3 1         21     4 2 3 1
  22     3 4 2 1         19     3 2 4 1
  23     4 3 2 1         18     2 3 4 1
		

Crossrefs

A109075 Number of primes which use each of 0-to-n decimal digits exactly once.

Original entry on oeis.org

0, 0, 0, 0, 16, 0, 0, 2668, 0, 0
Offset: 0

Views

Author

Zak Seidov, Jun 21 2005

Keywords

Comments

There are exactly 16 five-digit primes using decimal digits 0-to-4 exactly once: A109176 and 2668 eight-digit primes using each of 0-to-7 decimal digits exactly once: A109177, A109178. Cf. A094258.

Crossrefs

A177262 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} starting with exactly k consecutive integers (1<=k<=n).

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 18, 4, 1, 1, 96, 18, 4, 1, 1, 600, 96, 18, 4, 1, 1, 4320, 600, 96, 18, 4, 1, 1, 35280, 4320, 600, 96, 18, 4, 1, 1, 322560, 35280, 4320, 600, 96, 18, 4, 1, 1, 3265920, 322560, 35280, 4320, 600, 96, 18, 4, 1, 1, 36288000, 3265920, 322560, 35280, 4320, 600, 96, 18, 4, 1, 1
Offset: 1

Views

Author

Emeric Deutsch, May 15 2010

Keywords

Examples

			T(4,2)=4 because we have 1243, 2314, 3412, and 3421.
Triangle starts:
      1;
      1,    1;
      4,    1,   1;
     18,    4,   1,  1;
     96,   18,   4,  1,  1;
    600,   96,  18,  4,  1,  1;
   4320,  600,  96, 18,  4,  1,  1;
  35280, 4320, 600, 96, 18,  4,  1,  1;
		

Crossrefs

Cf. A000142 (row sums), A005165, A007489, A094258.

Programs

  • Magma
    A177262:= func< n,k | k eq n select 1 else (n-k)*Factorial(n-k) >;
    [A177262(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, May 18 2024
    
  • Maple
    T := proc (n, k) if k = n then 1 elif k < n then factorial(n-k)*(n-k) else 0 end if end proc: for n to 11 do seq(T(n, k), k = 1 .. n) end do; # yields sequence in triangular form
  • Mathematica
    T[n_, k_]:= (n-k+1)! -(n-k)! +Boole[k==n];
    Table[T[n,k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, May 18 2024 *)
  • SageMath
    def A177262(n,k): return (n-k)*factorial(n-k) + int(k==n)
    flatten([[A177262(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, May 18 2024

Formula

T(n, k) = (n-k)*(n-k)! if k < n, otherwise T(n,n) = 1.
T(n, 1) = A094258(n) = (n-1)!(n-1).
Sum_{k=1..n} T(n, k) = A000142(n) (row sums).
Sum_{k=1..n} k*T(n,k) = Sum_{j=1..n} j! = A007489(n).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = A005165(n). - G. C. Greubel, May 18 2024
Showing 1-8 of 8 results.