cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A049984 Primes of the form n! - (n-1)! + 1.

Original entry on oeis.org

2, 5, 19, 97, 601, 35281, 5748019201, 2311256907767808001, 594596384994354462720001, 5382999938946608755288342267304597177897268019200000000001, 136332557214406957166109544809874331662074014454506289616400595025920000000000001
Offset: 1

Views

Author

Keywords

Comments

Primes in A188914.

Crossrefs

Cf. A188914. For more terms, see A049432.

Programs

Formula

a(n) = A188914(A049432(n)). - Elmo R. Oliveira, Feb 18 2025

A362777 Triangular array read by rows: T(n,k) = n!*k + 1, n >= 1, 1 <= k <= n.

Original entry on oeis.org

2, 3, 5, 7, 13, 19, 25, 49, 73, 97, 121, 241, 361, 481, 601, 721, 1441, 2161, 2881, 3601, 4321, 5041, 10081, 15121, 20161, 25201, 30241, 35281, 40321, 80641, 120961, 161281, 201601, 241921, 282241, 322561, 362881, 725761, 1088641, 1451521, 1814401, 2177281, 2540161, 2903041, 3265921
Offset: 1

Views

Author

Joe B. Stephen, May 03 2023

Keywords

Comments

These numbers are used in a simple proof of the infinitude of the primes: n!*i + 1 and n!*j + 1 are coprime for 1 <= i < j <= n, so for any n we get n coprime integers (greater than 1) and hence we get at least n distinct primes.

Examples

			Triangle T(n,k) begins:
  n\k  1    2    3    4    5    6 ...
  1    2
  2    3    5
  3    7   13   19
  4   25   49   73   97
  5  121  241  361  481  601
  6  721 1441 2161 2881 3601 4321
  ...
		

Crossrefs

Cf. A038507 (1st column), A188914 (right diagonal).

A346168 Primes p such that p*p! - 1 is prime.

Original entry on oeis.org

2, 3, 5, 7, 11, 397, 599, 2239
Offset: 1

Views

Author

Reza K Ghazi, Jul 08 2021

Keywords

Comments

a(9) > 10^4.

Crossrefs

Prime terms of A090704.

Programs

  • Maple
    select(p -> isprime(p) and isprime(p*factorial(p) - 1), [$2 .. 600])
  • Mathematica
    Select[Range[2, 600], PrimeQ[#] && PrimeQ[#*#! - 1] &]
    Select[Prime[Range[110]],PrimeQ[# #!-1]&] (* The program generates the first 7 terms of the sequence. *) (* Harvey P. Dale, Feb 12 2025 *)
  • PARI
    a = List(); for(p=2, 600, if(isprime(p) && isprime(p*p!-1), listput(a, p))); a
    
  • Sage
    [p for p in range(2, 600) if is_prime(p) and is_prime(p*factorial(p) - 1)]
Showing 1-3 of 3 results.