cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A049989 a(n) is the number of arithmetic progressions of positive integers, nondecreasing with sum <= n.

Original entry on oeis.org

1, 3, 6, 10, 14, 21, 26, 33, 42, 51, 58, 72, 80, 91, 107, 120, 130, 150, 161, 178, 199, 215, 228, 255, 272, 290, 316, 338, 354, 389, 406, 429, 460, 483, 508, 549, 569, 594, 630, 663, 685, 731, 754, 785, 833, 863, 888, 940, 969, 1007, 1054, 1090, 1118, 1175, 1212, 1253, 1305, 1342, 1373, 1444, 1476, 1515, 1577, 1621
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    seq(n)={my(w=(sqrtint(8*n+1)-1)\2+1); Vec(x/(1-x)^2 + sum(k=2, n, x^k/(1 - if(k<=w, x^(k*(k-1)/2)))/(1-x^k) + O(x*x^n))/(1-x))} \\ Andrew Howroyd, Sep 28 2019

Formula

From Petros Hadjicostas, Sep 29 2019: (Start)
a(n) = Sum_{k = 1..n} A049988(k). [Note that the offset of A049988 is 0.]
G.f.: (-1 + g.f. of A049988)/(1-x). (End)

Extensions

More terms from Petros Hadjicostas, Sep 28 2019

A049432 Numbers k such that k! - (k-1)! + 1 is prime.

Original entry on oeis.org

2, 3, 4, 5, 6, 8, 13, 20, 24, 46, 59, 150, 152, 198, 683, 880, 1135, 1907, 6617, 10243, 12016
Offset: 1

Views

Author

Paul Jobling (paul.jobling(AT)whitecross.com)

Keywords

Comments

a(21) > 12000. [From Donovan Johnson, Dec 18 2009]

Examples

			6! - (6-1)! + 1 = 601 is prime.
		

Crossrefs

Formula

a(n) = A090703(n) + 1. - Michael S. Branicky, Jun 11 2025

Extensions

a(15)-a(16) from Farideh Firoozbakht, Jul 18 2003
a(17)-a(20) from Donovan Johnson, Dec 18 2009
a(21) from Michael S. Branicky, Jun 11 2025

A188914 a(n) = n*n! + 1 = (n+1)! - n! + 1.

Original entry on oeis.org

1, 2, 5, 19, 97, 601, 4321, 35281, 322561, 3265921, 36288001, 439084801, 5748019201, 80951270401, 1220496076801, 19615115520001, 334764638208001, 6046686277632001, 115242726703104001, 2311256907767808001, 48658040163532800001, 1072909785605898240001
Offset: 0

Views

Author

John M. Campbell, Apr 17 2011

Keywords

Comments

It is unknown if all numbers of the form n*n!+1 are squarefree. n*n!+1 is squarefree for 0 < n < 52. It is unknown if there exist infinitely many primes of the form n*n!+1. For primes in this sequence, see A049984.

Crossrefs

Programs

  • Mathematica
    Table[(n*Factorial[n])+1,{n,0,30}]
  • PARI
    a(n) = n*n! + 1; \\ Michel Marcus, Aug 03 2022

Formula

E.g.f.: exp(x) + x/(1 - x)^2. - Stefano Spezia, Aug 03 2022

Extensions

a(0)=1 prepended by Alois P. Heinz, Aug 03 2022

A245495 Primes of the form n! - (n+1)! + (n+2)! + 1.

Original entry on oeis.org

103, 4441, 36650881, 5787936001, 19702293811201, 1075342687614074880001, 8547762518578406446202880000001, 59043709472234119545920159524322926688993280000000001, 698533028148544417308552639358841460358000936394290829866303488000000000001
Offset: 1

Views

Author

K. D. Bajpai, Jul 24 2014

Keywords

Comments

The next term a(10) has 95 digits which is too large to show in data section.
a(16) has 1181 digits, hence not included in b-file.
Primes for indices 3, 5, 9, 11, 14, 20, 27, 41, 54, 65, 81, 83, 105, 315, 323, 515, ... - Robert G. Wilson v, Aug 07 2014

Examples

			m = 3: m! - (m+1)! + (m+2)! + 1 = 103, which is prime, hence appears in the sequence.
m = 5: m! - (m+1)! + (m+2)! + 1 = 4441, which is prime, hence appears in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[n! - (n + 1)! + (n + 2)! + 1, {n, 200}], PrimeQ[#] &]
    Select[#[[1]]-#[[2]]+#[[3]]+1&/@Partition[Range[70]!,3,1],PrimeQ] (* Harvey P. Dale, Aug 20 2021 *)
  • PARI
    a(n) = p=n!-(n+1)!+(n+2)!+1;if(ispseudoprime(p),return(p))
    n=1;while(n<100,if(a(n),print1(a(n),", "));n++) \\ Derek Orr, Jul 27 2014

A245528 Primes of the form n! - (n + 1)! + (n + 2)! - 1.

Original entry on oeis.org

19, 101, 35999, 327599, 3306239, 81430271999, 24779106953279078399999, 10501089199335077511167999999, 1372369506422963989169318155460666934165503999999999, 117024364553755119629556890816711613171571359743999999999
Offset: 1

Views

Author

K. D. Bajpai, Jul 25 2014

Keywords

Comments

The term a(11) has 129 digits which is too large to show in data section.
a(15) has 1081 digits, hence not included in b-file.
The first 20 primes are for n = 2, 3, 6, 7, 8, 12, 21, 25, 40, 43, 83, 107, 132, 139, 478, 505, 931, 1516, 1739, 5208. - Jens Kruse Andersen, Aug 10 2014

Examples

			m = 2: m! - (m + 1)! + (m + 2)! - 1 = 19 which is prime, hence appears in the sequence.
m = 6: m! - (m + 1)! + (m + 2)! - 1 = 35999 which is prime, hence appears in the sequence.
		

Crossrefs

Programs

  • Magma
    [a: n in [0..100] | IsPrime(a) where a is Factorial(n) - Factorial(n + 1) + Factorial(n + 2) - 1 ]; // Vincenzo Librandi, Aug 11 2014
  • Mathematica
    Select[Table[n! - (n + 1)! + (n + 2)! - 1, {n, 200}], PrimeQ[#] &]
  • PARI
    for(n=1,200,s=n!-(n+1)!+(n+2)!-1;if(ispseudoprime(s),print1(s,", "))) \\ Derek Orr, Aug 10 2014
    
Showing 1-5 of 5 results.