A069321 Stirling transform of A001563: a(0) = 1 and a(n) = Sum_{k=1..n} Stirling2(n,k)*k*k! for n >= 1.
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
- Benoit Cloitre, On the fractal behavior of primes, 2011. [internet archive]
- Benoit Cloitre, On the fractal behavior of primes, 2011.
- D. Foata and D. Zeilberger, The Graphical Major Index, arXiv:math/9406220 [math.CO], 1994.
- D. Foata and D. Zeilberger, Graphical major indices, J. Comput. Appl. Math. 68 (1996), no. 1-2, 79-101.
Crossrefs
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*binomial(n, j), j=1..n)) end: a:= n-> `if`(n=0, 2, b(n+1)-b(n))/2: seq(a(n), n=0..30); # Alois P. Heinz, Feb 02 2018
-
Mathematica
max = 20; t = Sum[n^(n - 1)x^n/n!, {n, 1, max}]; Range[0, max]!CoefficientList[Series[D[1/(1 - y(Exp[x] - 1)), y] /. y -> 1, {x, 0, max}], x] (* Geoffrey Critzer, Nov 12 2012 *) Prepend[Table[Sum[StirlingS2[n, k]*k*k!, {k, n}], {n, 18}], 1] (* Michael De Vlieger, Jan 03 2016 *) a[n_] := (PolyLog[-n-1, 1/2] - PolyLog[-n, 1/2])/4; a[0] = 1; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 30 2016 *) allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; Table[Length[Select[Join@@Permutations/@allnorm[n],MemberQ[Differences[#],0]&]],{n,0,8}] (* Gus Wiseman, Jan 15 2022 *)
-
PARI
{a(n)=polcoeff(1+sum(m=1, n, (2*m-1)!/(m-1)!*x^m/prod(k=1, m, 1+(m+k-1)*x+x*O(x^n))), n)} \\ Paul D. Hanna, Oct 28 2013
Comments